

RECEIVED

2021 MAY -3 AM 8: 34

May 2, 2021

CITY OF PASADENA

Pasadena City Council % Mark Jomsky 100 North Garfield Ave. Pasadena, CA 91101

Re: Zoning Code Amendment PERMIT #6831: 590 S. FAIR OAKS

Dear City Council and Honorable Mayor,

The citizens of Pasadena are alarmed by the city's current plans for development as outlined in the South Fair Oaks Specific Plan. This plan is designed well beyond city infrastructure capacities, neither enhances nor encourages a small-town feel, is not of an appropriate scale for the surrounding historic neighborhoods, encourages very little green space, and will have a devastating cumulative impact on traffic on every major intersection surrounding the area. The proposed plan and resulting massive, densely populated projects are immeasurably frustrating to residents who are watching their city being altered in ways they never imagined.

What's even more shocking is that projects like 590 South Fair Oaks are being approved prematurely based on the DRAFT South Fair Oaks Specific Plan, which is still technically under development and should be continuing through the public process. On October 29, 2020, during the height of COVID-10 lockdowns, a third-round community workshop was conducted for the South Fair Oaks Specific plan. Only 20 people attended the Zoom-format meeting because most residents were unaware of it and therefore not in attendance. The fact that the council will likely approve height adjustments for this parcel tonight, with almost zero public input and based upon an incomplete public process, is startling.

These decisions should not be made in this way and are not in the public's interest. Preapproving the up-zoning of a specific parcel within a DRAFT without public participation violates long-standing policies, best practices, and guiding principles for our city. With approvals rushed through in this way, not only has the process of public participation been undermined but this approval has set a precedent for "spot' rezoning in all areas surrounding the project. The process was misleading (even the project address was omitted on the official agenda), poorly executed (we need to see more complete staff reports), and will undoubtedly have devastating effects on our community. The preapproval of these zoning changes is also problematic because the South Fair Oaks Specific Plan massively up-zones the entire area similar to what the intersection of E. Walnut St. and N. Hudson Ave looks like. This stretch of Walnut feels like an urban concrete jungle—something Pasadena was never meant to be. To think you want to repeat this atrocity throughout the South Fair Oaks area, beginning with 590 South Fair Oaks, is appalling. Have you considered how these future projects blend with some of the most historic neighborhoods in Pasadena just two blocks away?

Most frustrating of all, the South Fair Oaks Specific Plan is based on the assumption that our roads and intersections are currently functioning at normal levels of service, while anyone can plainly see they are not (or *were* not, before COVID shutdowns). The folly of this assumption is perfectly illustrated by the Transportation Impact Analysis, Outside CEQA Evaluation for the proposed project at nearby 650 South Raymond, which projects that with the addition of this one 30,000 sq ft medical office, two turning movements of Glenarm and Arroyo Parkway are reduced to a F grade (fail) in Level of Service (LOS). (Please see attached documentation for more detail.)

This small development with its projected 845 net total trips will result in significant negative effects relating to traffic. Just imagine the cumulative effects the South Fair Oaks Specific Plan will have, considering that it will substantially increase our traffic volume when completed. How will our intersections handle the increase in density if they are already failing and we add massive medical complexes like 590 South Fair Oaks without properly studying its effect on the community?

It is apparent that with the addition of 590 South Fair Oaks, the surrounding area is certain to have serious failing intersections and safety concerns that need traffic engineering insight and proper mitigation. The addendum to the Certified EIR for 590 South Fair Oaks associates only 1,246 weekday vehicle trips for a 100,000 sq ft. building. For some context, 590 South Fair Oaks is three times the size of 650 South Raymond, but the addendum adds just 401 additional trips compared to 650 South Raymond. If 590 South Fair Oaks generated proportional trips to 650 South Raymond, the calculation should be more like 2,600 trips. Why is the medical office building at 590 South Fair Oaks projected to have so many less trips on a proportional basis than 650 South Raymond?

What will happen to our overburdened roads and failing intersections when thousands of new residential units, medical offices and businesses are added in accordance with this new specific plan? Our public has yet to have the opportunity to participate in the process to voice these concerns and here the council is already approving projects based on the DRAFT of a plan.

Medical office projects like 590 South Fair Oaks adjacent to high-density housing will have a significant impact on our roads. We need to review how and (more importantly) why we are allowing such a substantial increase in unmitigated vehicle trips to clog our streets and neighborhoods. Gridlock traffic does not need to happen and could be avoided with appropriate foresight and planning, but the council's rush to approve projects like 590 South Fair Oaks, with limited public participation and flawed EIR addendums to 10-year-old CEQA studies, is not a positive step forward.

Pasadenans are not willing to let their city become a carbon copy of the Westside, and so we question whether or not the truth of this plan is clear to most residents: The current specific plan for South Fair Oaks will create a massive concrete housing district with zero thought to the neighboring areas. If we can see past the "planner's talk" of sidewalks and paseos, it's obvious that the real consequences of such substantial population growth within a small section of our city will absolutely degrade our quality of life and the feel of our historic neighborhoods. Land Use regulations were meant to help neighborhoods evolve without sacrificing unique characteristics or charm. That is not happening here.

How do the adjacent neighborhoods of Madison Heights and West Pasadena, which are only two blocks away on either side, fit in with such massive medical buildings and housing units? These two neighborhoods, full of historic single- and multi-family homes, would have been a valuable source of context for this plan and this particular project. These neighborhoods are thriving and beautiful, a representation of what Pasadena used to look like. And yet these historic homes will now have to blend with a multitude of massive concrete edifices as you see with 590 South Fair Oaks.

Overall, the buildings in the South Fair Oaks Specific Plan are already too tall, too dense, and lacking the proper setbacks that make a neighborhood feel inviting, but here council is already approving a project within the plan to move forward. In light of all we are learning now about the risks of high-density living, long-term exposure to poor air quality, and the relationship between building to the urban edge and the urban heat island index, I believe the citizens of Pasadena should be alarmed by the city's current plans for development in this area and today's action of pre-approving zoning changes without serious public input.

Thank you, Erika Foy

	۶	→	•	1	4 -	4	1	†	~	>	+	1
Movement	EBL	EBT	EBR"	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT.	SBR
Lane Configurations	7	4 \$, A	† }		ሻ	11		<u> </u>	444	
ideal Flow (vphpi)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.91		1.00	0.91	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	5
Frt	1.00	0.96		1.00	0.99		1.00	0.97		1.00	0.98	•
Fit Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1805	3453		1805	3564		1805	5040		1805	5065	
Fit Permitted	0.48	1.00		0.48	1.00		0.15	1.00		0.11	1.00	
Satd. Flow (perm)	906	3453		919	3564		292	5040		217	5065	
Volume (vph)	85	220	95	333	333	31	78	1295	282	31	997	126
Peak-hour factor, PHF	0.92	0.75	0.79	0.88	0.86	0.87	0.79	0.93	0.87	0.70	0.95	0.80
Adj. Flow (vph)	92	293	120	378	387	36	.99	1392	324	44	1049	158
RTOR Reduction (vph)	0	22	0	0	8	0	0	48	Ō	0	25	0
Lane Group Flow (vph)	92	392	0	378	415	0	99	1668	Ö	44	1182	0
Confl. Peds. (#/hr)												12
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2		:	6		
Actuated Green, G (s)	37.0	37.0		37.0	37.0		35.0	35.0		35.0	35.0	
Effective Green, g (s)	37.0	37.0		37.0	37.0		35.0	35.0		35.0	35.0	•
Actuated g/C Ratio	0.46	0.46		0.46	0.46		0.44	0.44		0.44	0.44	
Clearance Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Grp Cap (vph)	419	1597		425	1 64 8		128	2205		95	2216	
v/s Ratio Prot		0.11			0.12			0.33			0.23	
v/s Ratio Perm	0.10			c0.41			c0.34			0.20		
v/c Ratio	0.22	0.25		0.89	0.25		0.77	0.76		0.46	0.53	
Uniform Delay, d1	12.9	13.0		19.6	13.1		19.1	18.9		15.9	16.5	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	1.2	0.4		23.2	0.4		33.6	2.5		15.4	0.9	
Delay (s)	14.1	13.4		42.9	13.4	- 1	54.7	21.4		31.2	17.4	
Level of Service	В	В		D	В		D	C		С	В	
Approach Delay (s)		13.5			27.3	'		23.2			17.9	
Approach LOS		8			С			С			В	
intersection Summary	1	frank.		13.5° M	er Krist	nia si			阿尔拉特 斯		N. P. Vision	
HCM Average Control D	elay		21.3	F	CM Lev	el of Se	ervice		С			
HCM Volume to Capacit	y ratio		0.83									
Actuated Cycle Length (80.0	S	ium of lo	ost time	(s)		8.0			
Intersection Capacity Ut			75.5%			el of Ser	` '		D			
Analysis Period (min)			15			-						
c Critical Lane Group												

	۶	-	7	1	4	4	1	†	<i>*</i>	/	↓	1
Movement	EBL	EBT	EBR	WBL.	WBT	WBR	NBL	MBI	ANBRI	#86 kd	ESBI.	MG ER
Lane Configurations	ካ	ተ ጉ		ካ	ተኩ		*	ተተቡ	111-201-1111	7	ተተኑ	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.91		1.00	0.91	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Fipb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.96		1.00	0.99		1.00	0.97		1.00	0.98	
Fit Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1805	3449		1805	3564		1805	5040		1805	5065	
Fit Permitted	0.47	1.00		0.48	1,00		0.15	1.00		0.11	1.00	
Satd. Flow (perm)	901	3449		910	3564		292	5040		217	5065	
Volume (vph)	85	221	99	333	336	31	93	1295	282	31	997	126
Peak-hour factor, PHF	0.92	0.75	0.79	0.88	0.86	0.87	0.79	0.93	0.87	0.70	0.95	0.80
Adj. Flow (vph)	92	295	125	378	391	36	118	1392	324	44	1049	158
RTOR Reduction (vph)	0	22	Ô	0	8	0	0	48	0	0	25	0
Lane Group Flow (vph)	92	399	0	378	419	0	118	1668	. 0	44	1182	0
Confl. Peds. (#/hr)												12
Tum Type	Perm			Perm	September 1		Perm			Perm		\
Protected Phases		4			8			2			6	
Permitted Phases	4			.8			2			6		
Actuated Green, G (s)	37.0	37.0		37.0	37.0		35.0	35.0		35.0	35.0	
Effective Green, g (s)	37.0	37.0		37.0	37.0		35.0	35.0		35.0	35.0	
Actuated g/C Ratio	0.46	0.46		0.46	0.46		0.44	0.44		0.44	0.44	
Clearance Time (s)	4.0	4.0	at activity.	4.0	4.0		4.0	4.0		4.0	4.0	Heli
Lane Grp Cap (vph)	417	1595		421	1648		128	2205		95	2216	<u> </u>
v/s Ratio Prot		0.12		1.461	0.12		1125 186				0.23	$(x,y)\in \partial x$
v/s Ratio Perm	0.10			c0.42	E * ' \$T .		c0.40			0.20		
v/c Ratio	0.22	0.25		0.90	0.25		0.92	0.76		0.46	0.53	
Uniform Delay, d1	12.9	13.1		19.8	13.1		21.2	18.9		15.9	16.5	
Progression Factor	1.00	1.00		1.00	1.00	a	1.00	1.00		1.00	1.00	
Incremental Delay, d2	1.2	0.4		24.5	0.4		60.8	2.5		15.4	0.9	
Delay (s)	14.1	13.4		44.3	13.5		52.0	21.4		31.2	17.4	
Level of Service	В	В		D	В		F	C		Č	В	
Approach Delay (s)		13.6			27.9			25.3			17.9	
Approach LOS		В			С			C			В	
Intersection Summary	11.3 20 3 (11.3 54 (11.1 (18.3		中发 15 20 22 - 大人之一	L. C. (C. L.)			MES IN	Karana Kanana	- 1		ii .	
HCM Average Control D	elay		22.3	ŀ	ICM Le	vel of Se	ervice		С			
HCM Volume to Capacit	ty ratio		0.91								1 -	-
Actuated Cycle Length ((s)		80.0	S	Sum of k	ost time	(s)		8.0			
Intersection Capacity Ut			75.7%			el of Ser			D			
Analysis Period (min)			15								•	
c Critical Lane Group												

· ·	٦	>	`	1	4	4	1	1	<i>p</i>	-	↓	1
Section of the section of	#EBL		* EBR	HE VI 2 NO.	WBT	WER	TENERS	NEW	WE 184	antz:Ink	¥SBT_	SBR
Lane Configurations	4	∱ ₽		ħ	†î,		ሻ	444		*	ተተኩ	
Ideal Flow (vphpi)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.91	• •	1.00	0.91	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Flpb, ped/bikes	1.00	1.00	•	1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.94		1.00	0.98		1.00	0.95		1.00	0.99	
Fit Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1805	3383		1805	3539		1805	4952		1805	5119	
Fit Permitted	0.54	1.00		0.25	1.00	4	0.11	1.00		0.11	1.00	
Satd. Flow (perm)	1017	3383		472	3539		217	4952		217	5119	
Volume (vph)	97	454	328	424	207	41	44	1132	507	83	1262	104
Peak-hour factor, PHF	0.79	0.94	0.94	0.92	0.70	0.92	0.61	0.93	0.96	0.80	0.91	0.92
Adj. Flow (yph)	123	483	349	461	296	45	72	1217	528	104	1387	113
RTOR Reduction (vph)	0	8	Ö	0	13	0	0	98	0	Ö	12	Ö
Lane Group Flow (vph)	123	824	. 0	461	328	0	72	1647	0	104	1488	0
Confl. Peds. (#/hr)			. 12.									8
Turn Type	Perm		i filogo	Perm	sland (aller	100	Perm			Perm		·
Protected Phases		4	2 0 1 1		8	w 4-*		2			6	
Permitted Phases	4			148			2			. 6		
Actuated Green, G (s)	37.0	37.0		37.0	37.0		35.0	35.0		35.0	35.0	
Effective Green, g (s)	37.0	37.0		37.0	37.0		35.0	35.0		35.0	35.0	
Actuated g/C Ratio	0.46	0.46		0.46	0.46		0.44	0.44		0.44	0.44	
Clearance Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Grp Cap (vph)	470	1565		218	1637		95	2167		95	2240	
v/s Ratio Prot		0.24			0.09			0.33		, if the fig.	0.29	A 800 K
v/s Ratio Perm	0.12			c0.98			0.33			c0.48	.,	
v/c Ratio	0.26	0.53		2.11	0.20		0.76	0:76		1.09	0.66	A. 250
Uniform Delay, d1	13.1	15.3		21.5	12.7		18.9	19.0		22.5	17.8	
Progression Factor	1.00	1.00		1.00	1.00	1 (m. 1941) 1 (m. 1941)	1.00	1.00	مان چېزې سامد پ	1.00	1.00	
Incremental Delay, d2	1.4	1.3		516.8	0.3		42.6	2.6		120.3	1.6	
Delay (s)				538.3	13.0	100		21.5		142.8	19.4	5.0
1 1 - C M 3	14.5	16,6			10.0			7 X X	and the same of th			
Level of Service	14.5 B	В		536.3 F	В		E) C	olikiseld ti	F	В	
Approach Delay (s)		>									В 27.4	
		В			В) C	Charles VI			
Approach Delay (s)	В	16.3 B		F	B 315.0		E) C			27.4	
Approach Delay (s) Approach LOS	B	16.3 B	68.4	F	B 315.0	vel of Se	and the state of t) C	Z Z	F	27.4 C	
Approach Delay (s) Approach LOS Intersection Summary	B Delay	16.3 B		F	315.0 F	vel of Se	and the state of t) C		F	27.4 C	
Approach Delay (s) Approach LOS Intersection Summary HCM Average Control D	B Delay ty ratio	16.3 B	68.4	F F	315.0 F		ervice) C		F	27.4 C	
Approach Delay (s) Approach LOS Intersection Summary HCM Average Control D HCM Volume to Capaci	B Delay iy ratio (s)	B 16.3 B	68.4 1.62	F	315.0 F ICM Le	ost time	ervice (s)) C	Ε	F	27.4 C	
Approach Delay (s) Approach LOS Intersection Summary HCM Average Control D HCM Volume to Capaci Actuated Cycle Length (B Delay iy ratio (s)	B 16.3 B	68.4 1, 62 80.0	F	B 315.0 F ICM Le	ost time	ervice (s)) C	8.0	F	27.4 C	

	۶	-	•	1	4	•	4	†	*	/	ļ	1
Movement 44	EBL	EBT	EER	WEL	WBT	WBR	28		NBR	490		
Lane Configurations	7	44		۲	41		7	444		7	444	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.91		00.	0.91	égat it.
Frpb, ped/bikes	1.00	1,00		1.00	1.00		1.00	1.00		1.00	1.00	
Flpb, ped/bikes	1.00	1.00	s. T	1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.94		1.00	0.98		1.00	0.95		1.00	0.99	ign on magain
Fit Protected	0.95	1.00	á	0.95	1.00		0.95	1.00		0.95	1.00	Sale in
Satd. Flow (prot)	1805	3377	. **.	1805	3539		1805	4952		1805	5119	AUEDOOF U
Fit Permitted	0.53	1.00		0.24	1.00			1.00		0.11	1.00	\$55 KG 1
Satd. Flow (perm)	1016	3377		454	3539		217	4952		217	5119	alada, //
Volume (vph)	97	457	346	424	208	41	51	1132	507	83	1262	104
, , ,	0.79	0.94	0.94	0.92	0.70	0.92	0.61	0.93	0.96	0.80	0.91	0.92
Peak-hour factor, PHF												
Adj. Flow (vph)	123	486	368	2 0 4	297	45	84	1217	528	104	1387	a to emity dimen
RTOR Reduction (vph)	0	8	0	0	13	0	0	98	0	0	12	0
Lane Group Flow (vph) Confl. Peds. (#/hr)	123	846	0	461	329	0	84	1647	0	104	1488	
Turn Type	Perm		24.7 i	Perm			Perm	page of in the	<i>-</i> :-	Perm	Torra g	
Protected Phases		4	,	3 46.22	8		14 - FS251	2		- 	6	Crispanians
Permitted Phases	4	-		8	-		2			6	-	typtermis.
Actuated Green, G (s)	37.0	37.0		37.0	37.0		35.0	35.0		35.0	35.0	a Bitt
Effective Green, g (s)	37.0	37.0		37.0	37.0		35.0	35.0		35.0	35.0	92
Actuated g/C Ratio	0.46	0.46	8000	0.46	0.46		0.44	0.44		0.44	0.44	alter all
Clearance Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	30.50	4.0	4.0	
				210	1637		95	2167	e Propries	95	2240	
Lane Grp Cap (vph)	470	1562		210	0.09		95		est in Same	95		
v/s Ratio Prot		0.25		00	0.09		A 22	0.33	1	-0.40	0.29	
v/s Ratio Perm	0.12	0.54		c1.02			0.39	a:		c0.48	- 0.000	
v/c Ratio	0.26	0.54		2.20	0.20		0.88	0.76		1.09	0.66	
Uniform Delay, d1	13.1	15.4		21.5	12.7		20.6	19.0		22.5	17.8	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	3
Incremental Delay, d2	1.4	1.4		553.2	0.3		64.6	2.6		120.3	1.6	
Delay (s)	14.5	16.8		57	13.0		3500	21,5		1424	19.4	54) 54)
Level of Service	В	В		€.F.	В		F) C		F	В	
Approach Delay (s)		16.5			335.5			24.5			27.4	101.64
Approach LOS		В			F			С			С	
THE EXCEPTION SUMMERY				1000	***************************************	eren Neskirakan dayan d		; .	2 1	Man y		
HCM Average Control D			71.8	+	ICM Le	vel of S	ervice	,	E			
HCM Volume to Capaci			1.66				347		1 .			S. Dall
Actuated Cycle Length (80.0			ost time			8.0			
Intersection Capacity Ut Analysis Period (min)	ilization		98.4% 15	ţ	CU Lev	el of Se	rvice	igenija i	F		1.50	
, ,			(3									
c Critical Lane Group										200000	eres last	

HCM Signalized Intersection Capacity Analysis 509: Glenarm & Arroyo Pkwy City of Pasadena

Synchro 6 Report Page 1

^{*} Please note the three failing intersection turns at Glenarm and Arroyo as the project 650 South Raymond is added.

RECEIVED

2021 MAY -3 AM 9: 44

CITY CLERK
CITY OF PASADENA

May 3, 2021

City Council

c/o Mark Jomsky

City Clerk

100 North Garfield Ave. Pasadena, CA 91101

Re: Fair Oaks Specific Plan Zoning Code Amendment for 590 South Fair Oaks

Dear Mayor Gordo and City Council members:

We were disappointed that City Council passed the proposed amendment at the first reading. We still are questioning why this isn't impermissible spot zoning. While the City Attorney notes that this project is not adjacent to a residential neighborhood, it is our understanding that factor is not sufficient. We believe that an analysis of spot zoning requires a two-step approach — whether the spot zoning occurred and whether it is in the public interest. It is very clear to us that spot zoning is occurring. What is less clear, however, is how the change of zoning to allow this substantially larger office building is in the public interest. Particularly here where the impact of this much larger project has not been analyzed. Has this been addressed by City Council?

Moreover, it was disheartening to see that City Council was asked to pass an amendment to our zoning code without a map of the actual parcel in question. How can City Council adequately determine the impact this project will have on the area when the specific property to be developed isn't even clarified? That seems like a threshold question.

It is frustrating, as a Pasadena resident, to feel like we have to constantly monitor what is happening in development, and to feel like something is going to slip through if we aren't relentlessly writing letters. Once the development is here, it is here to stay. And each project seems to be pointed to as precedent. Buildings get bigger and taller, more trees are taken out, and green space and breathing room are lost. Canyons of office buildings are going to crop up. There are consequences here that go beyond this one project.

We are not opposed to development at this address. The area needs some development. But we hope, and expect, that the development will be in line with our current zoning codes and will be a benefit to our community. We do not think that the answer here is to signal to developers that we will change the zoning codes in order to make the developer happy.

Thank you, Megan Foker
On behalf of Livable Pasadena