ATTACHMENT L TRANSPORTATION IMPACT ANALYSIS PREPARED BY THE DEPARTMENT OF TRANSPORTATION

Transportation Impact Analysis

CEQA Evaluation

Category 2

Project Address: 127-141 North Madison Avenue

Project Summary: Demolition of existing office development;

construction of 4,000 sf office space, and 53

rental units

Applicant: Zovi Seferian

Planning and Entitlement MBC Enterprises LLC

127 N Madison Avenue, Suite 200

Pasadena, CA 91101

Attention: Kelvin Parker, Zoning Administrator

City Planning Department

September 28, 2017

Table of Contents

I.	Study Objective	. 1
II.	Project Description	. 1
III.	Existing Transportation Network	. 1
	Street System Classifications	. 1
	Existing Transit Service	. 3
IV.	Transportation Impact Analysis Methodology	. 3
	Analysis Purpose	. 5
	Analysis Cap Criteria - Transportation Performance Measures	. 5
	Definitions	. 6
	VMT Per Capita	6
	VT Per Capita	.6
	Proximity and Quality of Bicycle Network	.6
	Proximity and Quality of Transit Network	7
	Pedestrian Accessibility Score	10
٧.	Project Transportation Impact Analysis	11
	VMT Per Capita Analysis1	11
	VT Per Capita Analysis1	12
	Proximity and Quality of Bicycle Network Analysis	12
	Proximity and Quality of Transit Network Analysis	12
	Pedestrian Accessibility Analysis	12
VI.	Conclusion	12
VII.	Appendices	12

List of Figures

Figure 1. Project Ground Floor Plan	2
Figure 2. City of Pasadena Adopted Street Types Map	4
Figure 3. Proximity and Quality of Bike Network Map	8
Figure 4. Proximity and Quality of Transit Network Map	9
<u>List of Tables</u>	
Table 1. Bicycle Facilities Hierarchy	6
Table 2. Description of Transit Facilities	7
Table 3. City of Pasadena CEQA Caps	10
Table 4. Transportation Performance Metrics Summary	11

I. Study Objective

This report analyzed the impact the development will have on the City transportation system by estimating incremental changes in vehicle miles traveled (VMT) per capita, vehicle trips per capita (VT), the project impact on service population proximity access to transit and bike facilities, and walk accessibility score.

II. Project Description

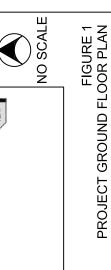
The City of Pasadena Department of Transportation conducted an analysis to review potential transportation impacts related to the demolition of an office development and the construction of 53 residential rental units, a total 4,000 sf of office space, and subterranean parking.

Vehicular site access to the proposed project is planned to be along Madison Avenue.

Figure 1 depicts the project's ground floor plan which highlights the location of the offices and driveway.

III. Existing Transportation Network

Street System Classifications


Colorado Boulevard is an east-west principal arterial with two travel lanes in each direction. The City of Pasadena's adopted street classification for this roadway is **City Connector**. The posted speed limit is 25 miles per hour in the business district. At the signalized Colorado Boulevard and El Molino Avenue intersection, there exist crosswalks along all four legs.

Corson Street is a one-way eastbound minor arterial with two travel lanes and a Class II bike lane. It is classified as a multimodal corridor where several I-210 on-and-off ramps are located. The City of Pasadena's adopted street classification for this roadway is **City Connector**. The posted speed limit is 35 miles per hour.

El Molino Avenue is a north-south roadway with one through travel lane provided in each direction. The El Molino Avenue at Walnut Street intersection restricts northbound and southbound left-turn movements during 7-9 AM and 4-6 PM on weekdays. The City of Pasadena's adopted street classification for this roadway is **Neighborhood Connector**.

Los Robles Avenue is a north-south roadway that borders the project site to the west. Two through travel lanes are provided in each direction in the project study area. Exclusive left-turn lanes are provided in both directions at the Walnut Street intersection. Parking is prohibited along both sides of Los Robles Avenue adjacent to the project site. The street is classified as **City Connector.**

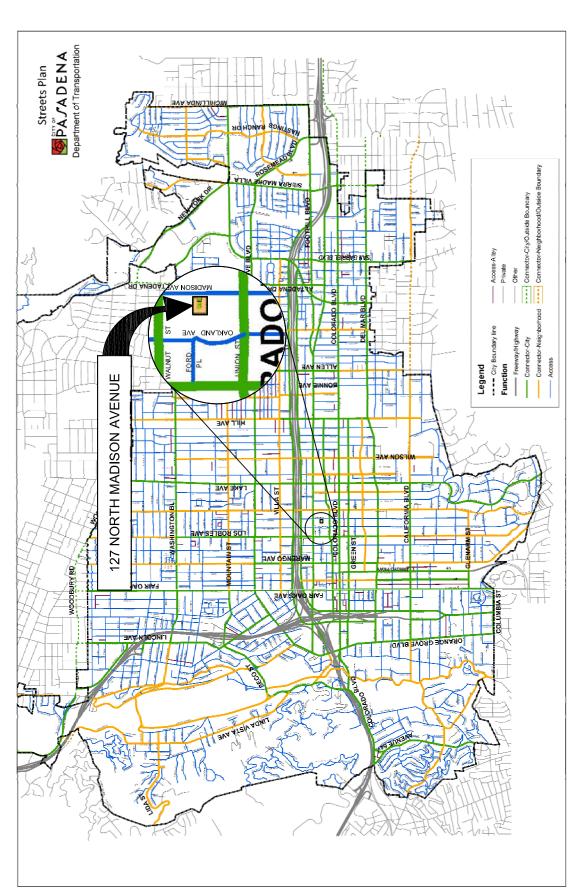
Madison Avenue is a north-south local roadway with one through lane for each direction. Parking is available on both sides of the street. The City of Pasadena's adopted street classification for this roadway is an **Access Road**. Both the Madison Avenue at Walnut Street intersection and the Madison Avenue at Union Street intersection are signalized with crosswalks along all legs of the intersection.

Maple Street is a one-way **City Connector** that runs westbound and parallel to the 210 freeway with two through travel lanes. The posted speed limit is 35 miles per hour.

Walnut Street is an east-west roadway located south of the project site. Two through travel lanes are provided in each direction. The City of Pasadena's adopted street classification for this roadway is **City Connector**. The posted speed limit is 30 miles per hour.

Figure 2 depicts the project in the City of Pasadena's Adopted Street Types map.

Existing Transit Service


Public transit service within the project study area is currently provided by LA Metro (Metro), Foothill Transit (FT), LA Department of Transportation (LADOT), and Pasadena Transit (PT). The project occupants will have adequate access to the City's transit network within a quarter mile radius from the project address. The locations of public transit stops near the project are summarized in the following table:

Location	Route
NE corner Los Robles Ave at Walnut St	PT 40; Metro 687
NE corner Los Robles Ave at Walnut St	PT 40; Metro 687
NW corner Los Robles Ave at Walnut St	PT 40; Metro 267
NE corner Los Robles Ave at Colorado Blvd	Metro 267, 686; LADOT 549
SW corner Los Robles Ave at Colorado Blvd	Metro 267; LADOT 549
NW corner Oakland Ave at Colorado Blvd	PT 10
NW corner Madison Ave at Colorado Blvd	PT 10; Metro 180/181; 256; 686
SE corner Madison Ave at Colorado Blvd	PT 10; Metro 180/181; 256; 686

IV. Transportation Impact Analysis Methodology

With the City of Pasadena General Plan, the City's guiding principles cumulatively represent the community's vision for the future:

- Growth will be targeted to serve community needs and enhance quality of life.
- New construction that could affect the integrity of historic resources will be compatible with, and differentiated from, the existing historic resource.
- Economic vitality will be promoted to provide jobs, services, revenues, and opportunities.
- Pasadena will be a socially, economically, and environmentally sustainable community. Pasadena will be a city where people can circulate without cars.
- Pasadena will be promoted as a cultural, scientific, corporate, entertainment, and educational center for the region.
- Community participation will be a permanent part of achieving a greater city.

- Pasadena is committed to public education and a diverse educational system responsive to the broad needs of the community.

Understanding the goals and objectives of the General Plan, the Pasadena Department of Transportation sets forth goals and policies to improve overall transportation in Pasadena and create "a community where people can circulate without cars." Inherent in this vision statement is to accommodate different modes of transportation including vehicle, pedestrian, bicycle, and transit. This report will assess accessibility of these different modes of travel when evaluating a project's impact, and the project's transportation impact to its community using the City's adopted transportation performance measures.

Analysis Purpose

Pasadena reviews several types and sizes of projects that could be subject to environmental review under the California Environmental Quality Act (CEQA). Transportation impact analyses are an integral part of the environmental review process that is required for all proposed projects not categorically exempt under CEQA.

Analysis Cap Criteria - Transportation Performance Measures

The Pasadena Department of Transportation adopted a set of performance measures and CEQA Caps that are closely aligned with the Mobility Element objectives and policies. Pasadena Department of Transportation's mobility performance measures assess the quality of walking, biking, transit, and vehicular travel in the City. A combination of vehicular and multimodal performance measures are employed to evaluate system performance in reviewing new development projects. They are:

- Vehicle Miles Traveled per Capita
- Vehicle Trips per Capita
- Proximity and Quality of the Bicycle Network
- Proximity and Quality of the Transit Network
- Pedestrian Accessibility

These performance measures align with the sustainability goals of the General Plan by evaluating the "efficiency" of projects by analyzing the per capita length and number of trips associated with changes in land use. With the expanded emphasis on sustainability and a continued focus on livability, the proposed performance measures will assist in determining how to balance travel modes as well as understand the mobility needs of the community.

Definitions

VMT Per Capita

The Vehicle Miles Traveled (VMT) per Capita measure sums the miles traveled for trips within the City of Pasadena Travel Demand Model (that is based on the SCAG regional model). The VMT total considers 100% of the mileage of trips that begin and end inside Pasadena and 50% of the distance travelled for trips with one end outside of Pasadena. The City's VMT is then divided by the City's total service population, defined as the population plus the number of jobs.

Although VMT itself will likely increase with the addition of new residents, the City can reduce VMT on a per-capita basis with land use policies that help Pasadena residents meet their daily needs within a short distance of home, reducing trip lengths, and by encouraging development in areas with access to various modes of transportation other than auto.

VT Per Capita

Vehicle Trips (VT) per Capita is a measure of motor vehicle trips associated with the City. The measure sums the trips with origins and destination within the City of Pasadena, as generated by the 2013 Trip-based citywide Travel Demand Model. The regional VT is calculated by adding the VT associated with trips generated and attracted within City of Pasadena boundaries, and 50% of the VT associated with trips that either begin or end in the City, but have one trip end outside of the City. The City's VT is then divided by the City's total service population, defined as the population plus the number of jobs.

As with VMT, VT itself will likely increase with the addition of new residents, but the City can reduce VT on a per-capita basis with land use policies that help Pasadena residents meet their daily needs within a short distance of home, reducing trip lengths, and by encouraging development in areas with access to various modes of transportation other than auto.

Proximity and Quality of Bicycle Network

The Proximity and Quality of Bicycle Network provides a measure of the percent of the City's service population (population + jobs) within a quarter mile of bicycle facility types. The facility types are aggregated into three hierarchy levels, obtained from the City's (Draft) Bicycle Transportation Plan categories as shown in the following table:

Table 1. Bicycle Facilities Hierarchy

LEVEL	DESCRIPTION	FACILITIES INCLUDED
1	Advanced Facilities	Bike Paths (P1) Multipurpose Paths (PP) Cycle Tracks/Protected Bike Lanes
2	Dedicated Facilities	Buffered Bike Lanes Bike Lanes (2, P2) Bike Boulevards (BB)

3	Basic Facilities	Bike Routes (3, P3)
		Enhanced Bike Routes (E3, PE3)
		Emphasized Bikeways (PEB)

For each bike facility level, a quarter-mile network distance buffer is calculated and the total service population (population + jobs) within the buffer are added.

The City can improve measures of Bike Facility Access by improving and expanding existing bike facilities and by encouraging residential and commercial development in areas with high-quality bike facilities.

Figure 3 depicts the project location in relation to the bike facility level in the area.

Proximity and Quality of Transit Network

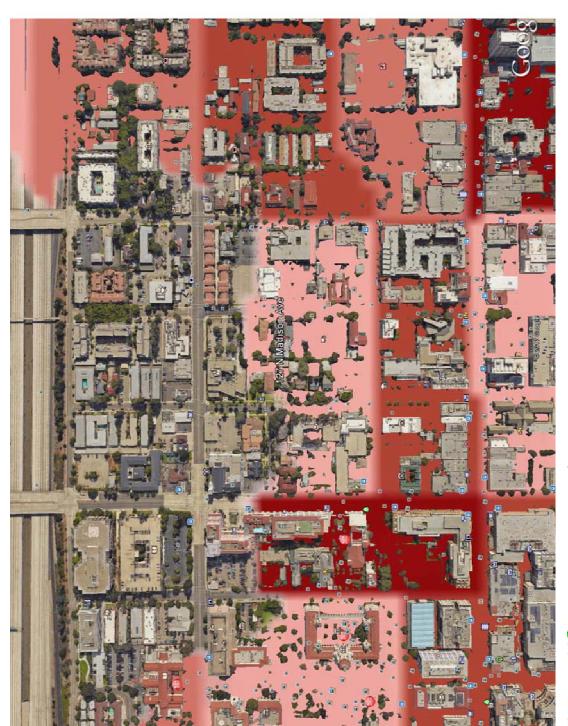
The Proximity and Quality of Transit Network provides a measure of the percent of the City's service population (population + jobs) within a quarter mile of each of each of three transit facility types, as defined in the following table:

Table 2. Description of Transit Facilities

	TRANSIT FACILITIES HIERARCHY											
LEVEL	FACILITIES INCLUDED											
1	Includes all Gold Line stops as well as corridors with transit service, whether it be a single route or multiple routes combined, with headways of five minutes or less during the peak periods.											
2	Includes corridors with transit headways of between six and 15 minutes in peak periods.											
3	Includes corridors with transit headways of 16 minutes or more at peak periods.											

For each facility level, a quarter-mile network distance buffer is calculated and the total service population (population + jobs) within the buffer are added.

The City can improve the measures of Transit Proximity and Quality by reducing headways on existing transit routes, by expanding transit routes to cover new areas, and by encouraging residential and commercial development to occur in areas with an already high-quality transit service.


Figure 4 depicts the project location in relation to the transit facility level in the area.

LEVEL 1 LEVEL 2 LEVEL 3

EGEND

500 **1000** feet

Google earth

LEVEL 1 LEVEL 2 LEVEL 3 EGEND

Pedestrian Accessibility Score

Proximity and Quality of Pedestrian Environment score provides a measure of the average walkability in the TAZ surrounding Pasadena residents, based on a Pedestrian Accessibility metric. The Pedestrian proximity metric is a simple count of the number of land use types accessible to a Pasadena resident or employee in a given TAZ within a 5-minute walk. The ten categories of land uses are:

- Retail
- Personal Services
- Restaurant
- Entertainment
- Office (including private sector and government offices)
- Medical (including medical office and hospital uses)
- Culture (including churches, religious and other cultural uses)
- Park and Open Space
- School (including elementary and high schools)
- College

The following table summarizes the City's Metrics for determining CEQA Caps:

Table 3. City of Pasadena CEQA Caps

	METRIC	DESCRIPTION	IMPACT THRESHOLD
1.	VMT Per Capita	Vehicle Miles Traveled (VMT) in the City of Pasadena per service population (population + jobs).	CEQA Threshold: An <u>increase</u> over existing Citywide VMT per Capita of 22.6.
2.	VT Per Capita	Vehicle Trips (VT) in the City of Pasadena per service population (population + jobs).	CEQA Threshold: An increase over existing Citywide VT per Capita of 2.8.
3.	Proximity and Quality of Bicycle Network	Percent of service population (population + jobs) within a quarter mile of bicycle facility types	CEQA Threshold: Any <u>decrease</u> in existing citywide 31.7% of service population (population + jobs) within a quarter mile of Level 1 & 2 bike facilities.
4.	Proximity and Quality of Transit Network	Percent of service population (population + jobs) located within a quarter mile of transit facility types.	CEQA Threshold: Any <u>decrease</u> in existing citywide 66.6% of service population (population + jobs) within a quarter mile of Level 1 & 2 transit facilities.
5.	Pedestrian Accessibility	The Pedestrian Accessibility Score uses the mix of destinations, and a network-based walk shed to evaluate walkability	CEQA Threshold: Any <u>decrease</u> in the Citywide Pedestrian Accessibility Score

V. Project Transportation Impact Analysis

Project analyses are based on the City's Transportation Impact Analysis Guidelines. Proposed projects are analyzed using the City's calibrated travel demand forecasting model (TDF) built on SCAG's regional model.

The City's TDF model uses TransCAD software to simulate traffic levels and travel patterns for the City of Pasadena. The program consists of input files that summarize the City's land uses, street network, travel characteristics, and other key factors. Using this data, the model performs a series of calculations to determine the amount of trips generated, the beginning and ending location of each trip, and the route taken by the trip. To be deemed accurate for project transportation impact on the transportation system, a model must be calibrated to a year in which actual land use data and traffic volumes are available and well documented. The Pasadena TDF has been calibrated to 2013 base year conditions using actual traffic counts, Census data, and land use data compiled by City staff with land uses' associated population and job increase estimates.

Projects with proposed land uses that are consistent with the General Plan and complimentary to their surrounding land uses are expected to reduce the trip length associated with adjacent land uses; and/or increase the service population access to pedestrians, bike, and transit facilities if the project is within a quarter mile of those facilities.

Table 4 summarizes the following analyses of the proposed project's impacts on the transportation system using the calibrated TDF model. The results are based on the project's vehicular and non-vehicular trip making characteristics, trip length, and its interaction with other surrounding/citywide land uses, and the City's transportation network.

Table 4. Transportation Performance Metrics Summary

Transportation Performance Metrics	Significant Impact Cap (existing)	Incremental change (existing + project)	Significant Impact?
VMT Per Capita	>22.6	17.1	No
VT Per Capita	>2.8	1.2	No
Proximity and Quality of Bicycle Network	<31.7%	35.5%	No
Proximity and Quality of Transit Network	<66.6%	68.5%	No
Pedestrian Accessibility	<3.88	3.88	No

VMT Per Capita Analysis

The TDF model calculation results indicated that the project's incremental VMT per capita change is 17.1. The incremental change does not exceed the adopted caps of significance under the Vehicle Miles Traveled (VMT) per capita of 22.6. Therefore, the project does not cause a significant impact to VMT per capita.

VT Per Capita Analysis

The TDF model calculation results indicated that the incremental VT per capita change is 1.2. This incremental change does not exceed the adopted caps of significance under the Vehicle Trips (VT) per capital of 2.8. Thus, the project does not cause a significant impact to VT per capita.

Proximity and Quality of Bicycle Network Analysis

Any decrease in the existing City-wide service population percentage of 31.7% within a quarter mile of bicycle facilities will indicate a significant impact. The TDF model calculation determined that the service population percentage with the project will be 35.5%. The project does not cause a significant impact on the existing bicycle network.

Proximity and Quality of Transit Network Analysis

Calculation of this metric provides a measure of the percent of the City's population and jobs within a quarter mile of transit facility types. Any decrease in the existing City-wide service population percentage of 66.6% within a quarter mile of transit facilities will indicate a significant impact. The TDF model calculation determined that the service population percentage with the project will be 68.5%. The project does not cause a significant impact on the existing transit network.

Pedestrian Accessibility Analysis

The proximity and quality of pedestrian environment provides a measure of the average walkability in the TAZ surrounding Pasadena residents, based on a Pedestrian Accessibility score. The score is a simple count of the number of land use types accessible to the resident in a given Transportation Analysis Zone (TAZ) within a 5-minute walk. Any decrease in the calculated Pedestrian Accessibility score of 3.88 will indicate a significant impact with the addition of the project. The TDF model results revealed that the pedestrian accessibility score will be 3.88. Therefore, the project does not cause a significant impact.

VI. Conclusion

The City of Pasadena Department of Transportation assessed the potential traffic impacts associated with the construction of mixed use development with a total 4,000 sf office space and 53 for-rent residential units.

Vehicular site access to the proposed project is planned to be along Madison Avenue.

The City's Transportation Demand Model determined that the proposed project does not cause a significant impact.

VII. Appendices

Memorandum of Understanding
City's Travel Demand Forecasting Model Output/Results

Appendix: Memorandum of Understanding

NEW COLOR NUITS BREAKDOWN				Z.	2 BEDROOM UNITS 10 20 CARS 14, 1-2 BR UNIT 1210 SF 1210 SF	1220 8F	3. 2-2 BR UNIT 1820 SF 2640 SF a 1-2 BR UNIT 1420 SF 1420 SF	1310 BF	UNITS 4	1020 SF	2-1 BR UNITS 1110 SF 2220 SF	16	2- ELEVATORS 96.8F 2- TRASH CHUTES 28.8F	17		OPEN SPACE BENEAUE 2250 SF		5TH FLOOR	2 BEDROOM UNITS 8 16 CARS	1320 SF 1320 SF	1310 8F			UNITS 3	1-1 BR UNIT 890 SF 890 SF 2-1 BR UNITS 1000 SF 2000 SF		TORS	TES	TOTAL FAR 12694 SF		OPEN 3PACE BALCONIES 4570 3F	F.A.R. 53 UNITS 65024 SF	SECIDENTIAL		TOTAL F.A.R. 70368 SF		
N. SUMMARY STATE	MRY				REQUIRED					18 CARB				S CARB			23 CAR8								18 CARS				5 CARS			23 CARS					
N SUMMARY PARACEL MAP 180-62, EL MOLINO M.R. 43-2 TRACT LOT 27 5723-015-028 43-2 TRACT LOT 27 CD-3 URE 3-9 F.AR. IS 1.5, ACEFFULER 150 × 200 = 32,000 SF 48 OWELLING UNITS FRONT SIDE REAR 0 0 0 0 50 (65 AVERAGING) N.A. DENSITY BONUS STED QUESTED QUESTED 1 0 0 0 0 5 10 10 5 10 10 1 0 0 0 5 10 10 1 0 0 5 10 10 1 0 0 5 10 10 1 0 0 5 10 10 1 0 0 5 10 10 1 0 0 1 0	SUMM	32%	100%		12 CARS	ш.	LP	اسا								2200 SF	16466 3F	36.36	28.5	680 SF	17438 SF	2010 SF	10000				5360 3F	2620 8F		865 805 808 808	1010 SF 1020 SF	16990 SF	36 SF	28 3F	600 SF	17878 SF	2200 3F
N SUMMARY PARACEL MAP 180-62, EL MOLINO M.R. 43-2 TRACT LOT 27 5723-015-028 43-2 TRACT LOT 27 CD-3 URE 3-9 F.AR. IS 1.5, ACEFFULER 150 × 200 = 32,000 SF 48 OWELLING UNITS FRONT SIDE REAR 0 0 0 0 50 (65 AVERAGING) N.A. DENSITY BONUS STED QUESTED QUESTED 1 0 0 0 0 5 10 10 5 10 10 1 0 0 0 5 10 10 1 0 0 5 10 10 1 0 0 5 10 10 1 0 0 5 10 10 1 0 0 5 10 10 1 0 0 1 0	NWOO	36	53		4000 SF	5200 8	5 65 F 87	5344 8		ø	1210 3F	1210 SF 1230 SF	1420 SF	5	1015.8F	1100 3F				DOR		ACEB				1210 SF	1340 SF	1310 SF 1420 SF		940 SF 1100 SF	1010 SF 1020 SF				DOR		SAINS
ATION SUMMARY PARCEL MAP 180-62, EL MOLINO M.R.	UNITS BREAKI	2 BR UNITS 1 BR UNITS	TOTAL UNITS	1ST FLOOR	OFFICES		TRASH BINS	TOTALFAR	2ND FLOOR	2 BEDROOM UNITS	1A, 1-2 BR UNIT	18. 1-2 BR UNITS	4. 1-2 BR UNITS	1 BEDROOM UNITS 1-1 BR UNIT	2-1 BR UNITS	2-1 BR UNITS	14 UNITS	2- ELEVATORS	2-TRASH CHUTES	ENCLOSED CORR	TOTAL FAR	OPEN SPACE TERR	OPEN STANCE BALLO	3RD FLOOR	2 BEDROOM UNITS	14, 12 BR UNIT 18, 12 BR UNIT	2. 42 BR UNIT	3. 2-2 BR UNIT 4. 1-2 BR UNIT	1 BEDROOM UNITS	± BRUNT ≥1 BRUNTS	1-1 BR UNIT	14 UNITS	2- ELEVATORS	2-TRASH CHUTES	ENCLOSED CORRI	TOTALFAR	OPEN SPACE BALOC
	BUILDING INFORMATION SUMMARY		ASSESSOR PARCEL NOS. 5723-015-027, 5723-015-028	ZONING - BY RIGHT	GENERAL PLAN DESIGNATION - MED MIXED USE. (0.0-2.25 F.A.R.)	5003	F.A.R. PER ZONING CODE FIGURE 3-9 F.A.R. IS 1.5.x	SINCE WE ARE IN FORD PLACE/FULLER SEMINARY PRECINT, FAR IS 2.0	2×32000 = 64000 SF ALLOWED F.A.R.	160' x 200' = 32,000 SF	48 DWELLING UNITS PER ACRE	35 DWELLING UNITS	G DENSITY BONUS 50%	DASE A LS = 35 ONITS ALLOWED	50' (65' AVERAGING)	N.A.			SIDE	ò	10		USING DENSITY BONUS	EQUESTED	1. BLDG HEIGHT INCREASE REQUESTED	BLDG HEIGHT (59'-0") INCREASE REQUEST 9'-0" (18%)	2. FAR INCREASE REQUESTED	REASE 6400 SF ADDITIONAL FAR REQUESTED	= /0,400 SF IOTAL PROJECT TAR		#S 000 GS ==						

Appendix: City's Travel Demand Forecasting Model Output/Results

VMT and VT Per Capita

Calculation Summary

Daily Trips	Internal	External					
Internal	355,812	348,886					
External	348,886	490,937					

Pop	136,047
Emp	125,805
Ext. Factor	50%

	EMFAC									
Speed	Internal	External	External Regional Total							
5	184	78	1,845	2,106	0%					
10	1,413	59	15,203	16,676	0%					
15	4,259	1,596	48,597	54,451	1%					
20	25,121	4,791	79,725	109,637	2%					
25	118,031	14,345	159,159	291,535	5%					
30	505,114	65,436	291,282	861,832	15%					
35	854,479	145,967	338,416	1,338,862	23%					
40	177,673	58,197	238,895	474,764	8%					
45	155,252	106,183	179,764	441,199	8%					
50	108,334	4,642	224,355	337,332	6%					
55	105,673	5,000	242,761	353,434	6%					
60	119,033	17,629	250,607	387,270	7%					
65	320,768	19,621	190,821	531,209	9%					
70	3,665	0	555,691	559,356	11%					
75	0	0	81,262	81,262						
80	0	0	0	0						
85	0	0	0	0						
SUM	2,498,998	443,545	2,898,382	5,840,925	100%					

TOTAL RAW DAILY SUMMARY						
Metric	Internal	External	Regional	Total	Capita	
VMT	2,498,998	887,089	5,796,765	9,182,852	35.1	
VT	355,812	697,772	-	1,053,584	4.0	
Length	7.0	1.3	-	8.7	-	

REDUCED DAILY SUMMARY						
Metric	Internal	External	Regional	Total	Capita	
VMT	2,498,998	443,545	2,898,382	5,840,925	22.3	
VT	355,812	348,886	-	704,698	2.7	
Length	7.0	1.3	-	8.3	-	

FINAL DAILY SCENARIO SUMMARY						
Pop Emp VMT VT VMT/Cap VT/Cap						
136,047	125,805	5,840,925	704,698	22.3	2.7	

2013 EXISTING SUMMARY					
Pop Emp VMT VT VMT/Cap VT/Cap					
135,938	111,348	5,591,328	686,619	22.6	2.8

INCREMENTAL SCENARIO RESULTS						
Pop	Emp	VMT	VT	VMT/Cap	VT/Cap	
108	14,457	249,597	18,079	17.1	1.2	
				PASS	PASS	

127 N Madison Avenue

Proximity and Quality Metric

Calculation Summary

	Proximity and Quality of Bicycle Network						
Existing							
Facility Type	Service Population	Service Population Adjustment	Final Service Population	Percent of Service Population			
Level 2	78,415	0	78,415	31.7%			
Level 3	123,670	0	123,670	50.0%			
No Facility	45,202	0	45,202	18.3%			
Exist City Total	247,286	0	247,286	100.0%			
Existing + Project							
Facility Type	Service Population	Service Population Adjustment	Final Service Population	Percent of Service Population			
Level 2	78,415	14555.55428	92,971	35.5%			
Level 3	123,670	0	123,670	47.2%			
No Facility	45,202	0	45,202	17.3%			
Exist City Total	247,286	14555.55428	261,842	100.0%			
Proximity and Quality Metric Summary - Bicycle							
Network	Service Population Adjustment	Significant Impact Threshold	Service Population %	Impact?			
Bike	14,556	< 31.7%	35.5%	No			

	Proximity and Quality of Transit Network						
Existing							
Facility Type	Service Population	Service Population Adjustment	Final Service Population	Percent of Service Population			
Level 1	90,600	0	90,600	36.6%			
Level 2	74,298	0	74,298	30.0%			
Level 3	50,495	0	50,495	20.4%			
No Facility	31,893	0	31,893	12.9%			
Exist City Total	247,286	0	247,286	100.0%			
Existing + Project	Existing + Project						
Facility Type	Service Population	Service Population Adjustment	Final Service Population	Percent of Service Population			
Level 1	90,600	14555.55428	105,156	40.2%			
Level 2	74,298	0	74,298	28.4%			
Level 3	50,495	0	50,495	19.3%			
No Facility	31,893	0	31,893	12.2%			
Exist City Total	247,286	14555.55428	261,842	100.0%			
Proximity and Quality Metric Summary - Transit							
Network	Service Population Adjustment	Significant Impact Threshold	Service Population %	Impact?			
Transit	14,556	< 66.6%	68.5%	No			

127 North Madison Avenue

Pedestrian Accessibility

Calculation Summary

PasadenaDTATAZ Land Use Types Population_In_TAZ Employment_In_TAZ Service_Population Land Use Types
134 8 291.24315 1098.767764 1390.010914 8

Transportation Impact Analysis

Outside of CEQA Analysis

Category 2

Project Address: 127-141 North Madison Avenue

Project Summary: Demolition of existing office development;

construction of 4,000 sf office space, and 53

rental units

Applicant: Zovi Seferian

Planning and Entitlement MBC Enterprises LLC

127 N Madison Avenue, Suite 200

Pasadena, CA 91101

Attention: Kelvin Parker, Zoning Administrator

City Planning Department

Table of Contents

I.	Study Objective	. 1
II.	Project Description	. 1
III.	Project Study Area	. 1
IV.	Existing Transportation Network	. 1
	Street System Classifications	. 1
	Existing Transit Service	. 5
V.	Transportation Analysis Methodology	. 5
	Analysis Threshold Criteria - Transportation Performance Measures	. 6
	Caps for Determining Project Street Segment Changes	. 7
	Caps for Determining Intersection Changes	. 7
VI.	Transportation Analysis	. 9
	Project Trip Generation	. 9
	Project Trip Generation	10
	Street Segment Analysis	10
	Intersection Level of Service (LOS) Analysis	12
	PEQI/BEQI Analysis	12
VII.	Congestion Management Plan	15
VIII	Conclusion	16

List of Figures

Figure 1. Project Ground Floor Plan	2
Figure 2. City of Pasadena Adopted Street Types Map	4
Figure 3. Project Trip Distribution	11
Figure 4. Adopted Transit Oriented Development Area	13
Figure 5. Traffic Intersection Volumes	14
<u>List of Tables</u>	
Table 1. City of Pasadena Metrics Cap	6
Table 2. Specific Street Segment Caps	7
Table 3: Intersection Level of Service Caps	8
Table 4. LOS Capacity Criteria	9
Table 5. Street Segment Changes Summary	12
Table 6. Signalized Intersection LOS Summary	12

I. Study Objective

The Department of Transportation at its discretion may analyze performance metrics outside of CEQA for projects below community-wide significance size thresholds of 50 units and/or 50,000 square feet of development. The analysis will assess the project's vehicular trips changes to adjacent intersections' Levels of Service (LOS) and "Access and Connector-Neighborhood" Street Type segments. The findings may result in imposing project approval conditions to better manage project trips and protect neighborhoods from the proposed development's vehicular trips, if applicable.

II. Project Description

The City of Pasadena Department of Transportation conducted an analysis to review potential transportation impacts related to the demolition of an office development and the construction of 53 residential rental units, and total 4,000 sf of office space, and subterranean parking.

Vehicular site access to the proposed project is planned to be along Madison Avenue.

Figure 1 depicts the project's ground floor plan which highlights the location of the offices and driveway.

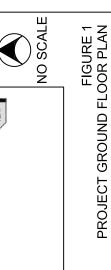
III. Project Study Area

The analysis reviewed the project's effects along the following street segment and intersections:

Street Segment:

Madison Avenue between Walnut Street and Union Street

Intersections:


- Madison Avenue at Walnut Street
- Madison Avenue at Union Street

IV. Existing Transportation Network

Street System Classifications

Colorado Boulevard is an east-west principal arterial with two travel lanes in each direction. The City of Pasadena's adopted street classification for this roadway is **City Connector**. The posted speed limit is 25 miles per hour in the business district. At the signalized Colorado Boulevard and El Molino Avenue intersection, there exist crosswalks along all four legs.

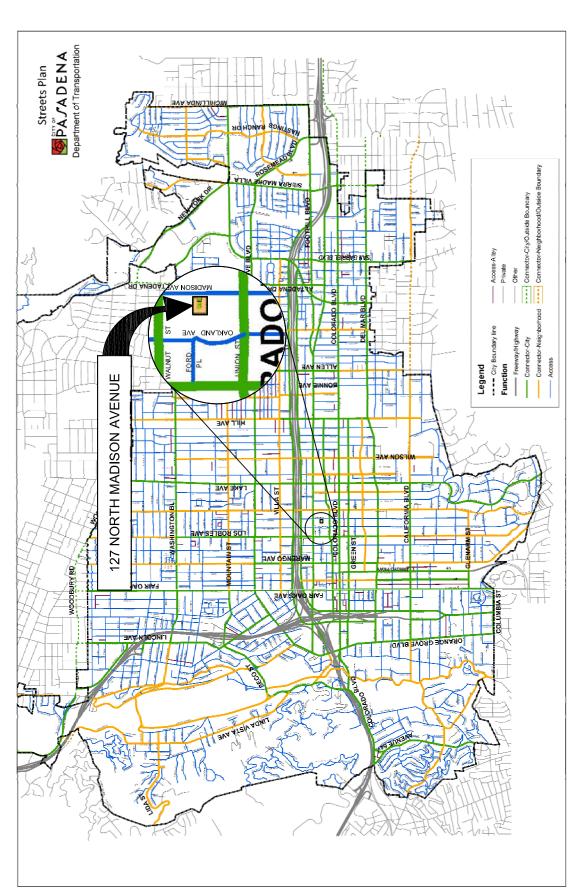
Corson Street is a one-way eastbound minor arterial with two travel lanes and a Class II bike lane. It is classified as a multimodal corridor where several I-210 on-and-off ramps

are located. The City of Pasadena's adopted street classification for this roadway is **City Connector**. The posted speed limit is 35 miles per hour.

El Molino Avenue is a north-south roadway with one through travel lane provided in each direction. The El Molino Avenue at Walnut Street intersection restricts northbound and southbound left-turn movements during 7-9 AM and 4-6 PM on weekdays. The City of Pasadena's adopted street classification for this roadway is **Neighborhood Connector**.

Los Robles Avenue is a north-south roadway that borders the project site to the west. Two through travel lanes are provided in each direction in the project study area. Exclusive left-turn lanes are provided in both directions at the Walnut Street intersection. Parking is prohibited along both sides of Los Robles Avenue adjacent to the project site. The street is classified as **City Connector**.

Madison Avenue is a north-south local roadway with one through lane for each direction. Parking is available on both sides of the street. The City of Pasadena's adopted street classification for this roadway is an **Access Road**. Both the Madison Avenue at Walnut Street intersection and the Madison Avenue at Union Street intersection are signalized with crosswalks along all legs of the intersection.


Maple Street is a one-way **City Connector** that runs westbound and parallel to the 210 freeway with two through travel lanes. The posted speed limit is 35 miles per hour.

Walnut Street is an east-west roadway located south of the project site. Two through travel lanes are provided in each direction. The City of Pasadena's adopted street classification for this roadway is **City Connector**. The posted speed limit is 30 miles per hour.

Figure 2 depicts the project within the context of the City of Pasadena's Adopted Street Types map.

Average daily traffic counts (ADT) collected in 2016 along Madison Avenue, an access road street type within the project vicinity, is summarized as follows:

Street Segment	Existing ADT Volumes
Madison Avenue between Walnut Street and Union Street	4,291

Existing Transit Service

Public transit service within the project study area is currently provided by LA Metro (Metro), Foothill Transit (FT), LA Department of Transportation (LADOT), and Pasadena Transit (PT). The project occupants will have adequate access to the City's transit network within a quarter mile radius from the project address. The locations of public transit stops near the project are summarized in the following table:

Location	Route
NE corner Los Robles Ave at Walnut St	PT 40; Metro 687
NE corner Los Robles Ave at Walnut St	PT 40; Metro 687
NW corner Los Robles Ave at Walnut St	PT 40; Metro 267
NE corner Los Robles Ave at Colorado Blvd	Metro 267, 686; LADOT 549
SW corner Los Robles Ave at Colorado Blvd	Metro 267; LADOT 549
NW corner Oakland Ave at Colorado Blvd	PT 10
NW corner Madison Ave at Colorado Blvd	PT 10; Metro 180/181; 256; 686
SE corner Madison Ave at Colorado Blvd	PT 10; Metro 180/181; 256; 686

V. Transportation Analysis Methodology

With the City of Pasadena General Plan, the City's guiding principles cumulatively represent the community's vision for the future:

- Growth will be targeted to serve community needs and enhance quality of life.
- New construction that could affect the integrity of historic resources will be compatible with, and differentiated from, the existing historic resource.
- Economic vitality will be promoted to provide jobs, services, revenues, and opportunities.
- Pasadena will be a socially, economically, and environmentally sustainable community.
- Pasadena will be a city where people can circulate without cars.
- Pasadena will be promoted as a cultural, scientific, corporate, entertainment, and educational center for the region.
- Community participation will be a permanent part of achieving a greater city.
- Pasadena is committed to public education and a diverse educational system responsive to the broad needs of the community.

Understanding the goals and objectives of the General Plan, the Pasadena Department of Transportation sets forth goals and policies to improve overall transportation in Pasadena and create "a community where people can circulate without cars." Inherent in

this vision statement is to accommodate different modes of transportation including vehicle, pedestrian, bicycle, and transit. The analysis is based on City Transportation Impact Analysis Guidelines. This report will assess accessibility of these different modes of travel and the project's transportation impacts using the City's adopted transportation performance measures.

<u>Analysis Threshold Criteria - Transportation Performance Measures</u>

The Department's defined criteria and categories when determining the level of transportation impact of projects fall under three categories based on project size and community-wide significance.

- Exempt projects have 10 residential units or less, are 10,000 sf or less, or generate less than 300 daily trips if less than 10,000 sf.
- Category 1 Projects considered below community-wide significance are between 11-49 residential units, or 10,001 to 49,999 sf.
- Category 2 Projects classified as having community-wide significance have 50 or more residential units, or are 50,000 sf or more.

Pasadena Department of Transportation's mobility performance measures assess the quality of walking, biking, transit, and vehicular travel in the City. A combination of vehicular and multimodal performance measures are employed to evaluate system performance in reviewing new development impacts.

Metrics in the following table shall be analyzed for projects of "communitywide significance" in the City's Metrics Cap Outside of CEQA:

Table 1. City of Pasadena Metrics Cap

	METRIC	DESCRIPTION	CAP*
1.	Street Segment Analysis	The street segment analysis assesses traffic intrusion on local streets in residential neighborhoods	Specific percent increases above existing traffic on streets with more than 1500 ADT would trigger conditions of approval to reduce project vehicular trips
2.	Auto Level of Service (LOS) as defined by the Transportation Research Board's Highway Capacity Manual (HCM) 2010.		A decrease beyond LOS D Citywide or LOS E within Transit Oriented Districts (TODs) would trigger conditions of approval to reduce project vehicular trips
3.	PEQI	Pedestrian Environmental Quality Index	Below average conditions
4.	BEQI	Bicycle Environmental Quality Index	Below average conditions

^{*}The adopted caps are not intended to be the absolute limits, but rather limits/ranges when exceeded may require additional project approval conditions

Caps for Determining Project Street Segment Changes

Caps for evaluating changes in vehicular volumes on street segments were developed to measure the potential changes of net new trips from projects that intensify an existing land use, change site access, or alter existing traffic patterns. The caps are designed to capture a project's anticipated level of changes measured in terms of net new trips over existing conditions.

Specific caps have been established to determine whether there would be any potential project changes along neighborhood street segments by project traffic. A conservative approach is taken when calculating the traffic growth by basing the calculation on the increase relative to existing traffic volumes as follows:

The analysis is limited to "access" and "neighborhood connector" street types within a residential context.

The daily traffic growth thresholds for determining the level of street segment transportation changes are summarized as follows:

Table 2. Specific Street Segment Caps

Existing ADT	Project-Related Vehicular Increase in ADT					
0 to 1,499 average daily trips	150 trips or more					
1,500 to 3,499 average daily trips	10 percent or more of final project ADT					
3,500 or more	8 percent or more of final project ADT					

As stated in Table 1, specific percent increases above existing traffic on streets with 1500 ADT or more would trigger conditions of approval to reduce project vehicular trips. If project-related net trips exceed the caps in the table above, conditions of approval would require the project applicant to implement measures to discourage neighborhood intrusion by project related traffic. Input from the affected residents, Council Districts, and DOT would be involved to encourage use of non-vehicular modes by the project's patrons. If the project traffic increases fall below the street segment thresholds, additional analyses are not required.

Caps for Determining Intersection Changes

Proposed development projects that meet or exceed the size thresholds to be considered projects of communitywide significance will evaluate intersections using the Highway

127 Madison Mixed Use Project Transportation Analysis

Capacity Manual (HCM) Level of Service (LOS) analysis criteria. HCM methodology determines an intersection's level of service by calculating delay.

Intersection LOS analysis using HCM criteria will be conducted for peak hour conditions.

LOS caps are summarized below:

Table 3: Intersection Level of Service Caps

Study Intersections	Existing + Project LOS Cap					
Citywide	D					
Transit Oriented District (TOD)	E					

Where the existing LOS for evaluated intersections are worsened with the addition of project traffic, recommended conditions of approval will be consistent with the City's guiding principles to encourage walking, biking, and transit to and from the project site to reduce project-related vehicular trips.

LOS descriptions are summarized in Table 4.

Table 4. LOS Capacity Criteria

HIGHWAY CAPACITY LEVEL OF SERVICE CRITERIA						
LOS	DESCRIPTION					
А	Progression is extremely favorable and most vehicles arrive during the green phase. Most vehicles do not stop at all. Short cycle lengths may also contribute to low delay.	< 10.0				
В	Progression is good, cycle lengths are short, or both. More vehicles stop than with LOS A, causing higher levels of average delay.	> 10.0 to 20.0				
С	Higher congestion may result from fair progression, longer cycle lengths, or both. Individual cycle failures may begin to appear at this level, though many still pass through the intersection without stopping.	> 20.0 to 35.0				
D	The influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high V/C ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.	> 35.0 to 55.0				
E	This level is considered by many agencies to be the limit of acceptable delay. These high delay values generally indicate poor (vehicle) progression, long cycle lengths, and high V/C ratios. Individual cycle failures are frequent occurrences.					
F	This level is considered oversaturation, which is when arrival flow rates exceed the capacity of the intersection. This level may also occur at high V/C ratios below 1.0 with many individual cycle failures. Poor progression and long cycle lengths may also be contributing factors to such delay levels.	> 80.0				
Source: 2010 Highway Capacity Manual.						

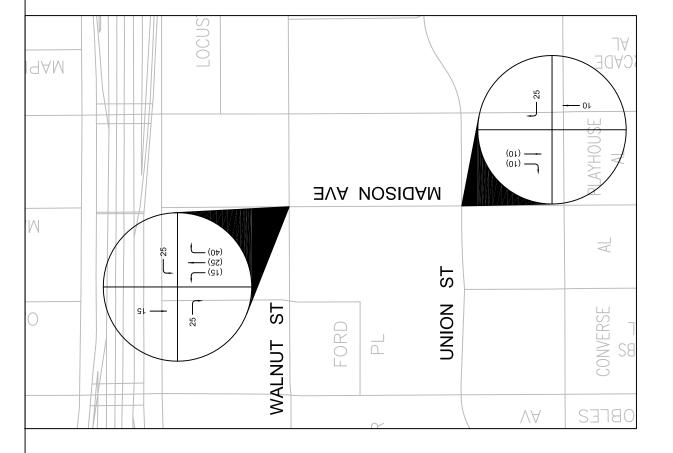
VI. Transportation Analysis

Project Trip Generation

Street segment and intersection LOS analyses are required for all Category 2 projects. The analyses involve evaluating existing plus project trip conditions against existing traffic. The industry standard procedure to determine the number of daily and peak hour trips a project would generate is based on published trip generation estimates from the ITE Trip Generation manual.

Project Trip Generation

The industry standard procedure to determine the number of daily and peak hour trips a project would generate is based on published trip generation estimates from the ITE Trip Generation manual and is summarized in the following table:


			Trip Ger	neration Rate	s (proposed)						
		AM Peak Hour			ur	PM Peak Hour						
Proposed Use	Land Use Code	Amount	Units	Measure	Daily	In		Out	Total	In	Out	Total
Apartment	220	53	DU	1	6.65		.10	0.41	0.51	0.40	0.22	0.62
General Office Building	710			1000			.36	0.19				
Contract Cineco Bunding	7.10	1,000	01	1000	11.01		.00	0.10	1.00	0.20	1.2-1	110
			Trip Ge	eneration Rate	es (previous)							
						AM Peak Hour			PM Peak Hour			
Previous Use	Land Use Code	Amount	Units	Measure	Daily	In		Out	Total	ln	Out	Total
General Office Building	710	24,283	SF	1000	11.01	1	.36	0.19	1.55	0.25	1.24	1.49
				Volumes	i I	1	۸۱	M Peak Ho			M Peak Ho	
	Proposed Use				Dailv	In	Al	Out	Total	ln F	Out	Total
	1 1000300 030				Daily	III	-	Out	Total	ın	Out	Total
Apartment					352		5	22	27	21	12	33
General Office Building					44		5	1	6	1	5	
Total Project Trips					396		11	22	33	22	16	39
Internal Trip Capture	0%				0		0	0	0	C	0	C
Walk-In	0%				0		0	0	0	0	0	
Transit Trips	0%				0		0	0		_		_
Pass-By Trips	0%				0		0	0		C		
Net Project Vehicle Trips					396		11	22	33	22	16	39
				Volumes								
					AM Peak Hour			PM Peak Hour				
	Previous Use				Daily	ln		Out	Total	In	Out	Total
General Office Building					267		33	5	38	6	30	36
-												
Total Project Trips	90/	I	I	_	267		33	5				
Internal Trip Capture	0%				0		0	0		_		
Walk-In Transit Trips	0%				0		0	0				
Pass-By Trips	0%				0		0	0		_		
Net Project Vehicle Trips	076				267		33	5				
ivet i roject venicie mps					207		JJ	5	30		30	30
Net total (proposed	d minus existino	trips)		129	-2	22	18	-4	16	-14	3

The square footage of the existing office development is based on the information included in the City's transportation model. Utilizing the ITE Trip Generation Manual rates, it is estimated that the project would generate an estimated 129 net daily trips, 4 less net AM peak hour trips, and 3 net PM peak hour trips.

Street Segment Analysis

Figure 3 describes the project trip distribution used to evaluate project traffic volumes on the street network. Using counts collected in 2016, the calculated increase in average daily traffic along Madison Avenue is summarized in Table 5.

127 NORTH MADISON AVENUE

NO SCALE

% OUTBOUND

LEGEND

׊

Table 5. Street Segment Changes Summary

Street Segment	Daily Volume	Project Volume	Vehicular Increase in ADT	Exceeds Cap?
Madison Ave between Walnut St and Union St	4,291	129	3.0%	No

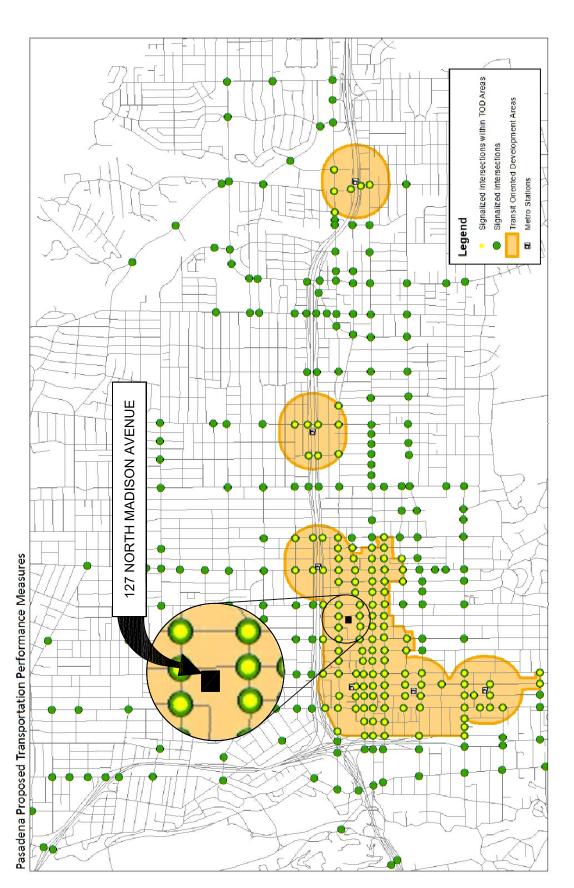
Intersection Level of Service (LOS) Analysis

Figure 4 indicates that the project is in the City's Transit Oriented District. Therefore, the Existing + Project LOS cap for intersections is "LOS E". Figure 5 describes the existing and existing plus project traffic volumes on the study intersections.

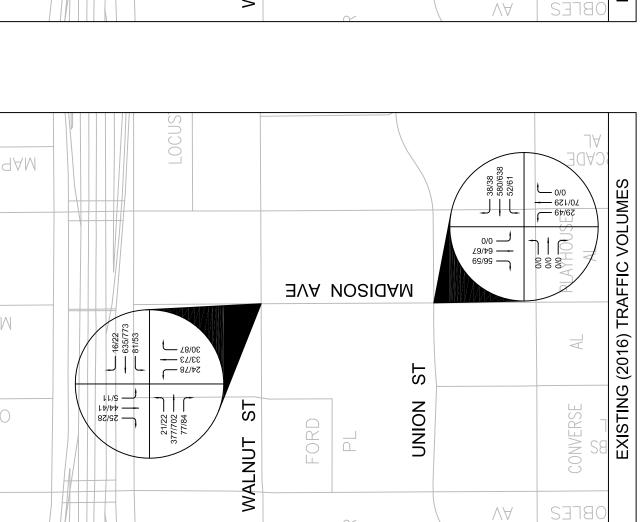
The calculated LOS results are summarized in Table 6.

Table 6. Signalized Intersection LOS Summary

Intersection	Peak Hour	Exist	ing	Exist w/Pro	_	Exceeds LOS Cap?
		Delay	LOS	Delay	LOS	Yes/No
Madison Ave at Walnut St	AM	3.8	Α	4.1	Α	No
	PM	6.9	Α	7.2	Α	No
Madison Ave at Union St	AM	6.4	Α	6.5	Α	No
	PM	4.9	Α	4.9	Α	No


The project is not expected to exceed adopted intersection caps.

PEQI/BEQI Analysis


A field observational survey was conducted along Madison Avenue between Walnut Street and Union Street to document existing pedestrian and bicycle quality conditions. Vehicle traffic features (i.e., number of lanes, vehicle speed, etc.) as well as street quality features (i.e., sidewalk widths and impediments, driveway cuts, land use characteristics, etc.) were collected for the east and west sides of the street.

Environmental quality of non-vehicular modes must be improved when assessment of project study street segments and intersections reveal less than average conditions. According to the PEQI and BEQI indicator and indicator category scores, the following observational scores are:

Segment	PEQI Score	BEQI Score
Madison Avenue between Walnut Street and Union Street		
Northbound (east side)Soutbound (west side)	58 – Average 62 – High	39 – Low 42 – Average

AVE NOSIDAM

FORD

ST

NOINO

 $\forall \mathbb{M}$

11/9

- 25/28

41/38

- 18/72 - 77/78 - 46/78

21/22 -377/702 -71/78 -

ST

WALNUT

EXISTING (2016) + PROJECT TRAFFIC VOLUMES

32/32 580/638 52/61

0/0 69/99

19/89

- 64/6<u>7</u> - 721/89

 \exists

CONVERSE

000

AM/PM VOLUMES

LEGEND XX/YY

VII. Congestion Management Plan

CMP Traffic Impact Analysis

The 2010 Congestion Management Program (CMP) for Los Angeles County requires an Environmental Impact Report for all projects that determine whether project traffic is a significant issue. The geographic area examined in the traffic study must include the following, at minimum:

- All CMP arterial monitoring intersections where the proposed project will add 50 or more trips during either the AM or PM weekday peak hours of adjacent street traffic
- If CMP arterial segments are being analyzed rather than intersections, the study area must include all segments where the proposed project will add 50 or more peak hour trips.
- Mainline freeway monitoring locations where the project will add 150 or more peak hour trips
- Caltrans must also be consulted through the Notice of Preparation (NOP) process to identify other specific locations to be analyzed on the state highway system.

The mainline freeway monitoring locations in Pasadena are:

- Arroyo Parkway at California Boulevard (CMP ID 119)
- Pasadena Avenue/ St John Avenue at California Boulevard (CMP ID 120)
- Rosemead Boulevard at Foothill Boulevard (CMP ID 121)
- 110 Freeway at Pasadena Avenue (CMP Station 1050)
- 134 Freeway west of San Rafael Avenue (CMP Station 1056)
- 210 Freeway west of Routes 134 and 710 (CMP Station 1060)
- 210 Freeway at Rosemead Boulevard (CMP Station 1061)

Since this project would not add 150 or more trips nor add 50 or more trips during either the AM or PM weekday peak hours of adjacent street traffic onto the mainline freeway monitoring locations, no further CMP analysis is required.

CMP Transit Impact Analysis

CMP transit analysis requirements are require that:

- Evidence that affected transit operators received the Notice of Preparation (NOP)
- Summary of existing transit service in the study area
- Project trip generation estimates
- Project transit trip estimates
- Project components including facilities and programs to encourage public transit use
- Analysis of transit impacts and mitigations, if any.

Section IV above described the existing transit services in the project area.

The CMP transit trip estimates are summarized:

127 Madison Mixed Use Project Transportation Analysis

Tra	Transit Trip Estimate Summary														
	Daily	AM Peak Hour	PM Peak Hour												
Total project vehicle trips	129	-4	3												
Total person trips	181	-2	4												
% CMP transit factor [1]	3.5%	3.5%	3.5%												
Total Transit Trips	6	0	0												

^{*} Based on the 2010 Congestion Management Program for Los Angeles County Appendix D.8.4 [1] 3.5% of Total Person Trips generated.

With the proposed project, an increase in transit trip ridership of 6 daily riders, 0 AM peak hour riders, and 0 PM peak hour riders are estimated. This calculation is based on total project vehicle trips. No trip credit was given from existing trips, internal trip capture, walk-in, pass-by trips, or transit trips. There should be adequate transit capacity to have no significant transit impacts.

VIII. Conclusion

The City of Pasadena Department of Transportation conducted an analysis to review potential transportation impacts related to the demolition of an office development and the construction of 53 residential rental units, and total 4,000 sf of office space, and subterranean parking. It is estimated that the project would generate an estimated 129 net daily trips, 4 less net AM peak hour trips, and 3 net PM peak hour trips.

The project is not expected to exceed adopted intersection caps nor street segment caps.

The PEQI score adjacent to the project is High.

The BEQI score adjacent to the project is Average.

VIII. Appendices

Memorandum of Understanding Traffic Volumes HCM Analysis PEQI/BEQI Calculations

Appendix: Memorandum of Understanding

BUILDING INFORMATIO	N SUMM	IARY		UNITS BREAKE	OOWN	SUMM	IARY				
LEGAL DESCRIPTION	PARCEL MA		EL MOLINO M.R.	2 BR UNITS 1 BR UNITS	36 17	68% 32%					
ASSESSOR PARCEL NOS.	5723-015-0	27, 5723-0	15-028	TOTAL UNITS	53	100%					
ZONING - BY RIGHT				1ST FLOOR	1200 88	_		4TH FLOOR PLA			
GENERAL PLAN DESIGNATION	4 -MED MIXE	D USE. (0.0	J-2.25 F.A.R.)	OFFICES	4000 8	F 12 CARS	REQUIRED	2 BEDROOM UNITS 1A. 1-2 BR UNIT	1210 SF	1210 SF	20 CARS
ZONE	CD-3			2- ELEVATORS	5200 SI 96 SI	-		1B. 1-2 BR UNIT 2. 4-2 BR UNIT	1210 SF	1220 SF 4840 SF	
F.A.R. PER ZONING CODE FIG	GURE 3-9 F./	A.R. IS 1.5;	*	TRASH BINS	48 8			 2-2 BR UNIT 1-2 BR UNIT 		2640 SF 1420 SF	İ
 SINCE WE ARE IN FORD PL SEMINARY PRECINT, FAR IS 		ł		TOTAL FAR	5844 8	F		5. 1-2 BR UNIT		1310 SF	
2 x 32000 = 64000 SF	ALLOWED F	FAR.		2ND FLOOR				1 BEDROOM UNITS	4 1010 SF	1010 SF	4 CARS
LOT SIZE	160' x 200'	= 32,000	SF	2 BEDROOM UNITS	9		18 CARS	1-1 BR UNIT	1020 SF	1020 SF	
ALLOWABLE DENSITY	48 DWELL	ING UNITS	PER ACRE	1A, 1-2 BR UNIT 1B, 1-2 BR UNITS		1210 SF		2-1 BR UNITS	1110 SF	2220 SF	!
UNITS BY RIGHT	35 DWELLI	ING UNITS	į.	2. 4-2 BR UNITS	1230 SF	4920 SF		14 UNITS		16890 SF :	24 CARB
AFFORDABLE HOUSING DENS	SITY BONUS	50%		3, 2-2 BR UNITS 4, 1-2 BR UNITS		2620 SF		2- ELEVATORS		96 8F	
32,000 x 48/43,560 = 35 BASE X	(1.5 = 53 U/	NITS ALLO	WED	1 BEDROOM UNITS	5 940 8F		5 CARB	2- TRASH CHUTES TOTAL FAR		28 SF 17014 SF	
ALLOWABLE HEIGHT	50' (65' AVI	/ERAGING)	į	2-1 BR UNITS		2030 SF			_		
ALLOWABLE STORIES	N.A.			2-1 BR UNITS	1100 SF	2200 SF		OPEN SPACE TERRAS OPEN SPACE BALCO		2250 SF 2050 SF	
				14 UNITS		16466 SF	23 CARS				
SETBACKS	FRONT	SIDE	REAR	2- ELEVATORS		96 SF		5TH FLOOR			
COMMERCIAL	o.	0'	O.	2-TRASH CHUTES ENCLOSED CORRI	DOR	28 SF 680 SF		2 BEDROOM UNITS	-		16 CARS
RESIDENTIAL	5	10'	10'					 1. 1-2 BR UNIT 2. 3-2 BR UNITS 	1040 SF	1320 SF 3120 SF	!
PRECIONAL STATE	-		10	TOTAL FAR		17438 SF		3. 2-2 BR UNITS 4. 1-2 BR UNIT		2620 SF 1200 SF	!
AFFORDABLE HOUSING	PENSIT	∨ BONLI	e.	OPEN SPACE TERRA OPEN SPACE BALCO		2010 SF 1520 SF		5. 1-2 BR UNIT		1420 SF	
CONCESSIONS REQUES		T DONO.		3RD FLOOR				1 BEDROOM UNITS	_		3 CARS
1. BLDG HEIGHT INCREASE RE	EQUESTED			2 BEDROOM UNITS	_		18 CARS	1-1 BR UNIT 2-1 BR UNITS	890 SF 1000 SF	890 SF 2000 SF	
BLDG HEIGHT (59'-0") INCREA	SE REQUE	EST 9'-0" (18%)	1A, 1-2 BR UNIT 1B, 1-2 BR UNIT		1210 SF 1210 SF		11 UNITS		12570 SF	40.0400
2. FAR INCREASE REQUESTED)			2. 4-2 BR UNIT	1340 SF	5360 SF		2- ELEVATORS		125/0 8F	19 CANO
10% F.A.R. INCREASE				3. 2-2 BR UNIT 4. 1-2 BR UNIT	1310 SF 1420 SF	2620 SF 1420 SF		2- TRASH CHUTES		28.8F	
64000 + 6400 = 70,40	00 SF TOTAL	L PROJECT	FAR	1 BEDROOM UNITS	5		5 CARS	TOTAL FAR		12694 SF	
LOT COVERAGE				1-1 BR UNIT		940 SF 2200 SF		OPEN SPACE TERRA	CER	3000 SF	
LOT COVERAGE				2-1 BR UNITS 1-1 BR UNIT	1100 SF 1010 SF	1010 SF		OPEN SPACE BALCO		4570 BF	
LOT AREA	= 32,000	0 SF		1-1 BR UNIT	1020 SF	1020 SF					
AREA COVERED BY BUILDING	= 23,560	0 SF		14 UNITS		16990 SF	23 CARS	F.A.R. 53	UNITS	65024 SF	=
PERCENTAGE OF BLDG AREA	= 74%			2- ELEVATORS		96 SF		NON-RESIDENTI	AL	5344 SF	=
				2-TRASH CHUTES ENCLOSED CORRIE	OOR	28 SF 600 SF				-2050 05	
1				TOTAL FAR		17878 SF		TOTAL F.A.R.		70368 SF	
1				OPEN SPACE BALCO		17878 SF 2200 SF					
4				OPEN SPACE BALCO	MIES	2200 SF					

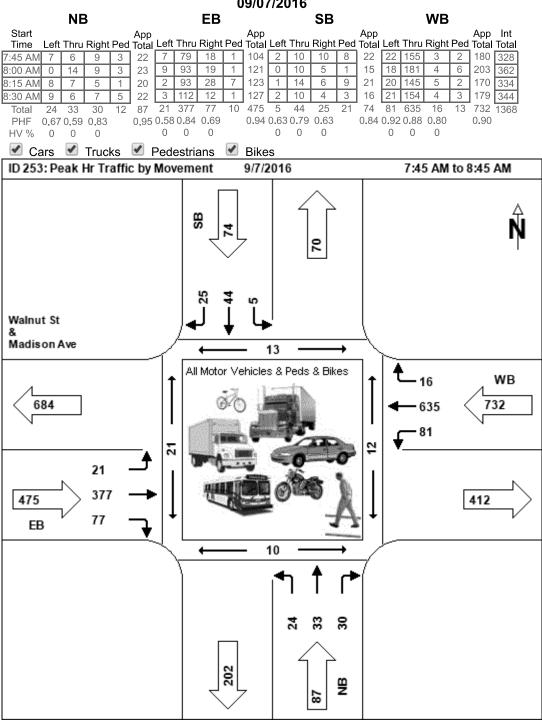
Appendix: Traffic Volumes

Transportation Data Management System

Volume Count Report

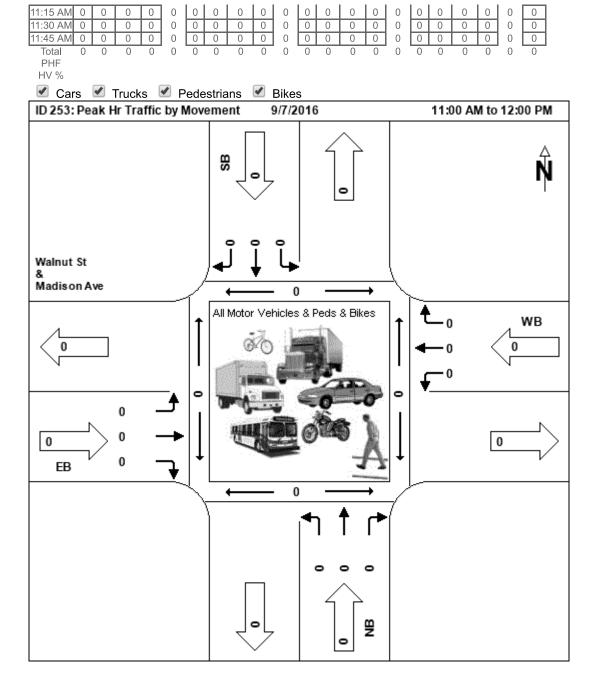
LOCATION INF	FO
Location ID	2203
Туре	SPOT
Fnct'l Class	-
Located On	Madison Ave
Loc On Alias	
BETWEEN	Walnut St AND Union St
Direction	2-WAY
County	Los Angeles
Community	Pasadena
MPO ID	
HPMS ID	
Agency	City of Pasadena

COUNT DATA	INFO
Count Status	Accepted
Start Date	Thu 9/8/2016
End Date	Fri 9/9/2016
Start Time	12:00:00 AM
End Time	12:00:00 AM
Direction	2-WAY
Notes	pasadena
Station	2203
Study	
Speed Limit	
Description	
Sensor Type	

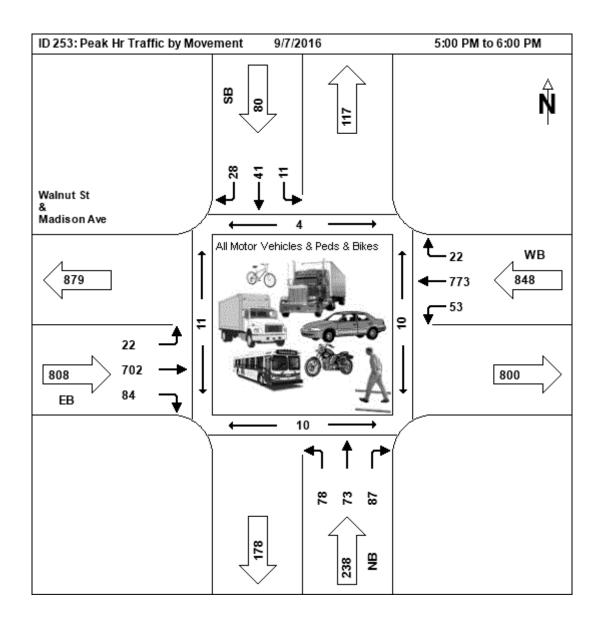

INTERVAL:15-M	IN										
	1:	5-min	Interv	al	Hourly						
Time	1st	2nd	3rd	4th	Count						
0:00-1:00	7	10	3	3	23						
1:00-2:00	2	2	2	0	6						
2:00-3:00	2	1	0	2	5						
3:00-4:00	0	1	3	1	5						
4:00-5:00	1	0	0	2	3						
5:00-6:00	7	5	9	12	33						
6:00-7:00	16	23	21	25	85						
7:00-8:00	21	36	36	73	166						
8:00-9:00	70	112	91	93	366						
9:00-10:00	87	80	79	84	330						
10:00-11:00	66	79	67	67	279						
11:00-12:00	72	71	59	94	296						
12:00-13:00	71	70	85	72	298						
13:00-14:00	72	77	74	70	293						
14:00-15:00	76	78	75	88	317						
15:00-16:00	58	84	94	80	316						
16:00-17:00	72	55	69	84	280						
17:00-18:00	72	98	80	90	340						
18:00-19:00	68	80	74	68	290						
19:00-20:00	58	65	61	44	228						
20:00-21:00	47	31	30	23	131						
21:00-22:00	22	21	28	30	101						
22:00-23:00	17	20	18	7	62						
23:00-24:00 📵	12	13	8	38							
Total	4,291										
AADT					4,291						
AM Peak				30	3:15-09:15 383						
PM Peak				17	':00-18:00 340						

Peak Hour Data for Intersection

Int ID: 253


Community: pasadena Corridor: Road 1: Walnut St Road 2: Madison Ave Road 4:

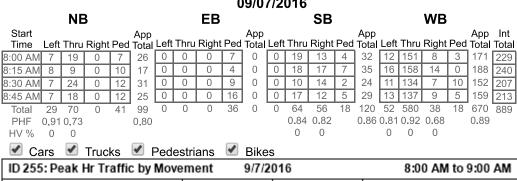
AM Peak Hour 09/07/2016

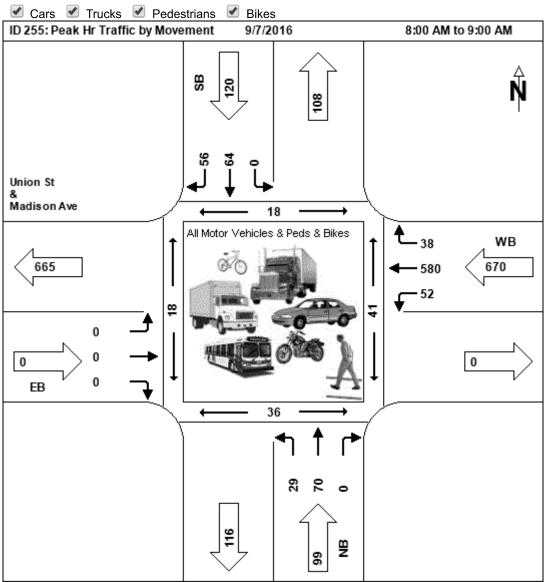

Midday Peak Hour 09/07/2016

	NI	3					EB					SB					WB	}			
Start				App					App					App					App	Int	
Time	Left Thre	u Right	Ped	Total	Left	Thru	Right	Ped	Total	Left	Thru	Right	Ped	Total	Left	Thru	Right	Ped	Total	Total	J
11:00 AM		Λ	Λ	1	0	0	0	0	0	0	0	0	0	Ω	0	Ω	0	0	0	Ω	1

PM Peak Hour 09/07/2016

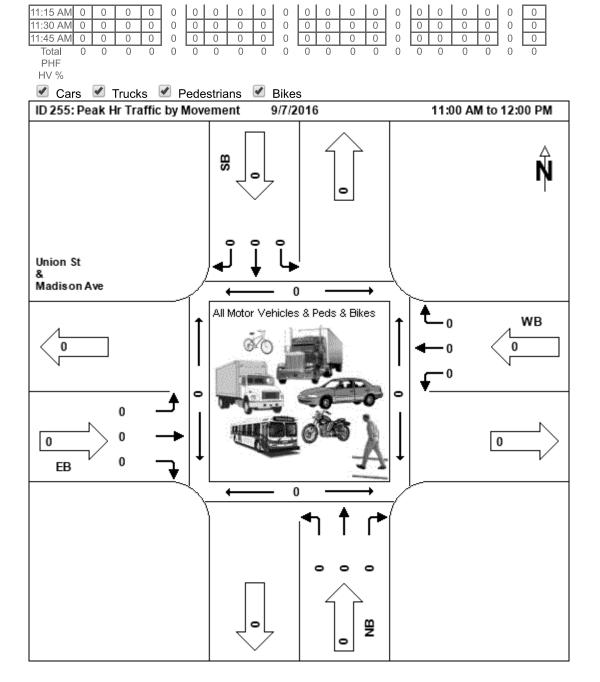
		NE	3					EΒ					SB					WB			
Start					App					App					App					App	Int
Time	Left	Thru	Right	Ped	Total	Left	Thru	Right	Ped	Total	Left	Thru	Right	Ped	Total	Left	Thru	Right	Ped	Total	Total
5:00 PM	26	22	17	5	65	8	156	15	6	179	3	12	7	10	22	12	216	4	1	232	498
5:15 PM	21	16	21	0	58	5	172	18	0	195	2	10	8	0	20	15	165	6	0	186	459
5:30 PM	17	18	24	0	59	6	179	24	0	209	3	12	6	0	21	12	206	5	0	223	512
5:45 PM	14	17	25	5	56	3	195	27	4	225	3	7	7	1	17	14	186	7	3	207	505
Total	78	73	87	10	238	22	702	84	10	808	11	41	28	11	80	53	773	22	4	848	1974
PHF	0.75	0.83	0.87		0.92	0.69	0.90	0.78		0.90	0.92	0.85	0.88		0.91	0.88	0.89	0.79		0.91	
HV %	0	0	0			0	0	0			0	0	0			0	0	0			
Ca	ars	✓	Truc	ks	✓	Pede	estria	ans	4	Bike	s										

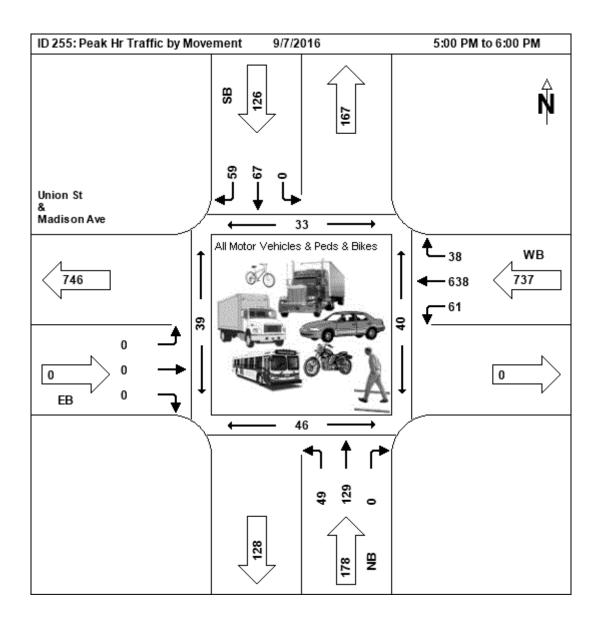

Peak Hour Data for Intersection


Int ID: 255
Community: Pasadena
Road 1: Union St
Road 2: Madison Ave

Corridor: Road 3: Road 4:

|<< < > >>| 1-1 of 1


AM Peak Hour 09/07/2016


Midday Peak Hour 09/07/2016

			EB						SB					WB	,							
Start					App					App					App					App	Int	
Time	Left T	hru	Right	Ped	Total	Left	Thru	Right	Ped	Total	Left	Thru	Right	Ped	Total	Left	Thru	Right	Ped	Total	Total	_
11:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

PM Peak Hour 09/07/2016

		NE	3					ΕB					SB					WB					
Start			D:		App		Tl	Dielet	D-4	App		Th	Dielet	DI	App	4	Th	Dielet	D1	App	Int		
Time	Left	Thru	Right	Ped	Total	Leπ	i nru	Right	Pea	lotal	Len	Inru	Rignt	Pea	lotal	Lett	i nru	Rignt	Pea	Iotal	lotal		
5:00 PM	25	35	0	12	60	0	0	0	13	0	0	21	22	2	43	21	165	11	5	197	300		
5:15 PM	6	33	0	2	39	0	0	0	6	0	0	16	8	12	24	14	150	16	10	180	243		
5:30 PM	6	31	0	19	37	0	0	0	15	0	0	14	13	15	27	14	179	4	11	197	261		
5:45 PM	12	30	0	7	42	0	0	0	12	0	0	16	16	10	32	12	144	7	7	163	237		
Total	49	129	0	40	178	0	0	0	46	0	0	67	59	39	126	61	638	38	33	737	1041		
PHF	0.49	0.92			0.74							0.80	0.67		0.73	0.73	0.89	0.59		0.94			
HV %	0	0										0	0			0	0	0					
Ca	ars	4	Truc	ks	✓	Pede	estri	ans	4	Bike	s												

127 Madison Mixed Use

127 - 141 North Madison Avenue

		AM Pea	ak Hour V	olumes	PM Pe	ak Hour V	olumes/
Intersection	Direction	Existing Year	Project	Existing w/	Existing Year	Project	Existing w/
		(2016)	1 10,000	Project	(2016)	1 10,000	Project
Madison Avenue at Walnut Street	NBL	24	3	27	78	3	81
	NBT	33	4	37	73	4	77
	NBR	30	7	37	87	7	94
	SBL	5	0	5	11	0	11
	SBT	44	(3)	41	41	(3)	38
	SBR	25	0	25	28	0	28
	EBL	21	0	21	22	0	22
	EBT	377	0	377	702	0	702
	EBR	77	(6)	71	84	(6)	78
	WBL	81	(6)	75	53	(6)	47
	WBT	635	0	635	773	0	773
	WBR	16	0	16	22	0	22
Madison Avenue at Union Street	NBL	29	0	29	49	0	49
	NBT	70	(2)	68	129	(2)	127
	NBR	0	0	0	0	0	0
	SBL	0	0	0	0	0	0
	SBT	64	2	66	67	2	69
	SBR	56	2	58	59	2	61
	EBL	0	0	0	0	0	0
	EBT	0	0	0	0	0	0
	EBR	0	0	0	0	0	0
	WBL	52	0	52	61	0	61
	WBT	580	0	580	638	0	638
	WBR	38	(6)	32	38	(6)	32

Appendix: HCM Analysis

	<i>•</i>	-	1	-	1	†	1	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	79	^	Ť	ተተ		†		†	
Volume (vph)	21	377	81	635	24	33	5	44	
Turn Type	custom		custom		Perm		Perm		
Protected Phases		2		2		4		4	
Permitted Phases	6		6		4		4		
Detector Phases	6	2	6	2	4	4	4	4	
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	20.0	20.0	20.0	20.0	20.2	20.2	20.2	20.2	
Total Split (s)	32.0	32.0	32.0	32.0	28.0	28.0	28.0	28.0	
Total Split (%)	53.3%	53.3%	53.3%	53.3%	46.7%	46.7%	46.7%	46.7%	
Yellow Time (s)	3.6	3.6	3.6	3.6	3.2	3.2	3.2	3.2	
All-Red Time (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	C-Min	C-Min	C-Min	C-Min	None	None	None	None	
Act Effct Green (s)	47.6	47.6	47.6	47.6		6.9		6.9	
Actuated g/C Ratio	0.79	0.79	0.79	0.79		0.12		0.12	
v/c Ratio	0.05	0.18	0.13	0.25		0.43		0.35	
Control Delay	2.7	2.2	2.5	2.3		13.7		17.5	
Queue Delay	0.0	0.0	0.0	0.0		0.0		0.0	
Total Delay	2.7	2.2	2.5	2.3		13.7		17.5	
LOS	Α	Α	Α	Α		В		В	
Approach Delay		2.2		2.3		13.7		17.5	
Approach LOS		Α		Α		В		В	

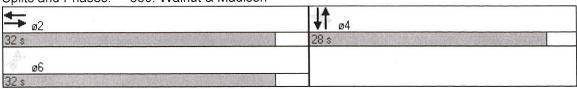
Cycle Length: 60

Actuated Cycle Length: 60

Offset: 16 (27%), Referenced to phase 2:EBWB and 6:EBWBL, Start of FDW or yellow

Natural Cycle: 45

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.43 Intersection Signal Delay: 3.8

Intersection LOS: A ICU Level of Service A

Intersection Capacity Utilization 43.0%

Analysis Period (min) 15

Splits and Phases: 630: Walnut & Madison

	-	1	†	ļ	
Lane Group	WBT	NBL	NBT	SBT	
Lane Configurations	ተተተ		†	^	
Volume (vph)	580	29	70	64	
Turn Type		Perm			
Protected Phases	2		4	4	
Permitted Phases		4			
Detector Phases		4			
Minimum Initial (s)	10.0	10.0	10.0	10.0	
Minimum Split (s)	17.6	21.2	21.2	21.2	
Total Split (s)	37.0	23.0	23.0	23.0	
Total Split (%)			38.3%		
Yellow Time (s)	3.6	3.2	3.2	3.2	
All-Red Time (s)	0.0	0.0	0.0	0.0	
Lead/Lag	0.0	0.0	0.0	0.0	
Lead-Lag Optimize?					
Recall Mode	Max	Max	Max	Max	
Act Effct Green (s)	33.0	WIGA	19.0	19.0	
Actuated g/C Ratio	0.55		0.32	0.32	
v/c Ratio	0.26		0.28	0.24	
Control Delay	3.6		14.1	13.0	
Queue Delay	0.0		0.0	0.0	
Total Delay	3.6		14.1	13.0	
LOS	3.0 A		В	В	
Approach Delay	3.6		14.1	13.0	
Approach LOS	3.0 A		В	13.0 B	
The state of the s			ט	D	
Intersection Summary	1				
Cycle Length: 60 Actuated Cycle Length Offset: 15 (25%), Refe Natural Cycle: 40 Control Type: Pretime Maximum v/c Ratio: 0 Intersection Signal De Intersection Capacity Analysis Period (min)	erenced t ed 0.28 elay: 6.4 Utilization			ı	of FDW or yellow ntersection LOS: A CU Level of Service A
Splits and Phases:	659: Uni	on & Ma	adison		

630: Walnut & Madison

	١	→	•	-	4	†	>	↓
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations	*	^ ^	75	^ ^		A		A
Volume (vph)	22	702	53	773	78	73	11	41
Turn Type	custom	1	custom		Perm		Perm	
Protected Phases		2		2		4		4
Permitted Phases	6		6		4		4	
Detector Phases	6	2	6	2	4	4	4	4
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	20.0	20.0	20.0	20.0	20.2	20.2	20.2	20.2
Total Split (s)	34.0	34.0	34.0	34.0	26.0	26.0	26.0	26.0
Total Split (%)	56.7%	56.7%	56.7%	56.7%	43.3%	43.3%	43.3%	43.3%
Yellow Time (s)	3.6	3.6	3.6	3.6	3.2	3.2	3.2	3.2
All-Red Time (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Lead/Lag								
Lead-Lag Optimize?								
Recall Mode	C-Min	C-Min	C-Min	C-Min	None	None	None	None
Act Effct Green (s)	39.6	39.6	39.6	39.6		12.4		12.4
Actuated g/C Ratio	0.66	0.66	0.66	0.66		0.21		0.21
v/c Ratio	0.07	0.37	0.18	0.37		0.71		0.23
Control Delay	4.7	5.0	4.9	4.1		20.9		13.1

Intersection Summary

Cycle Length: 60

Approach Delay

Approach LOS

Queue Delay

Total Delay

LOS

Actuated Cycle Length: 60

Offset: 7 (12%), Referenced to phase 2:EBWB and 6:EBWBL, Start of FDW or yellow

0.0

4.9

A

0.0

4.1

4.1

A

0.0

5.0

5.0

A

0.0 4.7

A

Natural Cycle: 45

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.71
Intersection Signal Delay: 6.9

Intersection LOS: A ICU Level of Service B

0.0

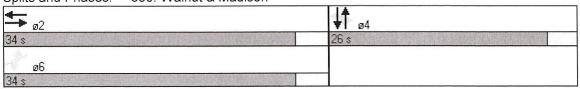
C

20.9

20.9

0.0

13.1


13.1

В

Intersection Capacity Utilization 55.6%

Analysis Period (min) 15

Splits and Phases: 630: Walnut & Madison

659: Union & Madison

	1	1	+
WBT	NBL	NBT	SBT
ተተተ		A	^
638	49	129	67
	Perm		
2		4	4
	4		
	4		
10.0	10.0	10.0	10.0
17.6	21.2	21.2	21.2
37.0	23.0	23.0	23.0
61.7%	38.3%	38.3%	38.3%
3.6	3.2	3.2	3.2
0.0	0.0	0.0	0.0
Max	Max	Max	Max
33.0		19.0	19.0
0.55		0.32	0.32
0.29		0.36	0.23
2.1		13.4	9.6
0.0		0.0	0.0
2.1		13.4	9.6
Α		В	Α
2.1		13.4	9.6
Α		В	Α
	10.0 17.6 37.0 61.7% 3.6 0.0 Max 33.0 0.55 0.29 2.1 0.0 2.1 A 2.1	638 49 Perm 2 4 10.0 10.0 17.6 21.2 37.0 23.0 61.7% 38.3% 3.6 3.2 0.0 0.0 Max Max 33.0 0.55 0.29 2.1 0.0 2.1 A 2.1	### 638 49 129 Perm 2 4 4 10.0 10.0 10.0 17.6 21.2 21.2 37.0 23.0 23.0 61.7% 38.3% 38.3% 3.6 3.2 3.2 0.0 0.0 0.0 Max Max Max 33.0 19.0 0.55 0.32 0.29 0.36 2.1 13.4 0.0 0.0 2.1 13.4 A B 2.1 13.4

Intersection Summary

Cycle Length: 60

Actuated Cycle Length: 60

Offset: 6 (10%), Referenced to phase 2:WBTL, Start of FDW or yellow

Natural Cycle: 40 Control Type: Pretimed Maximum v/c Ratio: 0.36 Intersection Signal Delay: 4.9


Intersection LOS: A ICU Level of Service A

Intersection Capacity Utilization 42.2%

Analysis Period (min) 15

Splits and Phases: 659: Union & Madison

©2	↓↑ ø4
37 s	23 %

	<u> </u>	\rightarrow	1	4	1	†	1	. ↓	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	Ŋ	^	75	^		†		†	
Volume (vph)	21	377	75	635	27	37	5	41	
Turn Type	custom	(custom		Perm		Perm		
Protected Phases		2		2		4		4	
Permitted Phases	6		6		4		4		
Detector Phases	6	2	6	2	4	4	4	4	
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	20.0	20.0	20.0	20.0	20.2	20.2	20.2	20.2	
Total Split (s)	32.0	32.0	32.0	32.0	28.0	28.0	28.0	28.0	
Total Split (%)	53.3%	53.3%	53.3%	53.3%	46.7%	46.7%	46.7%	46.7%	
Yellow Time (s)	3.6	3.6	3.6	3.6	3.2	3.2	3.2	3.2	
All-Red Time (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	C-Min	C-Min	C-Min	C-Min	None	None	None	None	
Act Effct Green (s)	47.1	47.1	47.1	47.1		7.5		7.5	
Actuated g/C Ratio	0.78	0.78	0.78	0.78		0.12		0.12	
v/c Ratio	0.05	0.18	0.12	0.26		0.45		0.32	
Control Delay	3.0	2.4	2.7	2.5		14.6		16.7	
Queue Delay	0.0	0.0	0.0	0.0		0.0		0.0	
Total Delay	3.0	2.4	2.7	2.5		14.6		16.7	
LOS	Α	Α	Α	Α		В		В	
Approach Delay		2.5		2.6		14.6		16.7	
Approach LOS		Α		Α		В		В	

Cycle Length: 60

Actuated Cycle Length: 60

Offset: 16 (27%), Referenced to phase 2:EBWB and 6:EBWBL, Start of FDW or yellow

Natural Cycle: 45

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.45
Intersection Signal Delay: 4.1

Intersection LOS: A ICU Level of Service A

Intersection Capacity Utilization 43.8%

Analysis Period (min) 15

Splits and Phases: 630: Walnut & Madison

→ _{ø2}	↓↑ ø4
32 \$	28 s
ø6 32 s	

	4	4	†	Ţ
Lane Group	WBT	NBL	NBT	SBT
Lane Configurations	ተተተ			†
Volume (vph)	580	29	68	66
Turn Type		Perm		
Protected Phases	2		4	4
Permitted Phases		4		
Detector Phases		4		
Minimum Initial (s)	10.0	10.0	10.0	10.0
Minimum Split (s)	17.6	21.2	21.2	21.2
Total Split (s)	37.0	23.0	23.0	23.0
Total Split (%)	61.7%	38.3%	38.3%	38.3%
Yellow Time (s)	3.6	3.2	3.2	3.2
All-Red Time (s)	0.0	0.0	0.0	0.0
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	Max	Max	Max	Max
Act Effct Green (s)	33.0		19.0	19.0
Actuated g/C Ratio	0.55		0.32	0.32
v/c Ratio	0.26		0.28	0.25
Control Delay	3.6		14.0	13.0
Queue Delay	0.0		0.0	0.0
Total Delay	3.6		14.0	
LOS	Α		В	В
Approach Delay	3.6		14.0	
Approach LOS	Α		В	В

Cycle Length: 60

Actuated Cycle Length: 60

Offset: 15 (25%), Referenced to phase 2:WBTL, Start of FDW or yellow

Natural Cycle: 40 Control Type: Pretimed Maximum v/c Ratio: 0.28 Intersection Signal Delay: 6.5

Intersection LOS: A ICU Level of Service A

Intersection Capacity Utilization 39.6%

Analysis Period (min) 15

Splits and Phases: 659: Union & Madison

ø2	↓ ↑ ø4
37 s	23 \$

M.		1
1 ////		1.1
PM	14	YD I
1		1
1 .	1	1
	1	

	•	\rightarrow	1	4-	1	†	-	↓	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	7	ተተ	Ť	^		1		^	
Volume (vph)	22	702	47	773	81	77	11	38	
Turn Type	custom		custom		Perm		Perm		
Protected Phases		2		2		4		4	
Permitted Phases	6		6		4		4		
Detector Phases	6	2	6	2	4	4	4	4	
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	20.0	20.0	20.0	20.0	20.2	20.2	20.2	20.2	
Total Split (s)	34.0	34.0	34.0	34.0	26.0	26.0	26.0	26.0	
Total Split (%)	56.7%	56.7%	56.7%	56.7%	43.3%	43.3%	43.3%	43.3%	
Yellow Time (s)	3.6	3.6	3.6	3.6	3.2	3.2	3.2	3.2	
All-Red Time (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	C-Min	C-Min	C-Min	C-Min	None	None	None	None	
Act Effct Green (s)	39.2	39.2	39.2	39.2		12.8		12.8	
Actuated g/C Ratio	0.65	0.65	0.65	0.65		0.21		0.21	
v/c Ratio	0.08	0.37	0.16	0.38		0.72		0.22	
Control Delay	5.0	5.3	4.8	4.2		21.4		12.5	
Queue Delay	0.0	0.0	0.0	0.0		0.0		0.0	
Total Delay	5.0	5.3	4.8	4.2		21.4		12.5	
LOS	Α			Α		С		В	
Approach Delay		5.2		4.2		21.4		12.5	
Approach LOS		Α		Α		С		В	

Cycle Length: 60

Actuated Cycle Length: 60

Offset: 7 (12%), Referenced to phase 2:EBWB and 6:EBWBL, Start of FDW or yellow

Natural Cycle: 45

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.72 Intersection Signal Delay: 7.2 Intersection Capacity Utilization 56.3%

Intersection LOS: A ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 630: Walnut & Madison

	-	1	†	↓
Lane Group	WBT	NBL	NBT	SBT
Lane Configurations	ተተተ		†	†
Volume (vph)	638	49	127	69
Turn Type		Perm		
Protected Phases	2		4	4
Permitted Phases		4		
Detector Phases		4		
Minimum Initial (s)	10.0	10.0	10.0	10.0
Minimum Split (s)	17.6	21.2	21.2	21.2
Total Split (s)	37.0	23.0	23.0	23.0
Total Split (%)		38.3%		
Yellow Time (s)	3.6	3.2	3.2	3.2
All-Red Time (s)	0.0	0.0	0.0	0.0
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	Max	Max	Max	Max
Act Effct Green (s)	33.0	TTICK.	19.0	19.0
Actuated g/C Ratio	0.55		0.32	0.32
v/c Ratio	0.29		0.36	0.24
Control Delay	2.1		13.4	
Queue Delay	0.0		0.0	0.0
Total Delay	2.1		13.4	
LOS	Α		15.4 B	3.4 A
Approach Delay	2.1		13.4	9.4
Approach LOS	Α		13.4 B	3.4 A
300 Per 100 Harris 100 Per 100			Ь	^
Intersection Summary				
Cycle Length: 60				
Actuated Cycle Length Offset: 6 (10%), Refer		nhaco	2-\MDTI	Start
Natural Cycle: 40	enced to	priase	Z.VVDIL	., Start 0
Control Type: Pretime	d			
Maximum v/c Ratio: 0				
Intersection Signal De	lay. 4.9	10.001		

Analysis Period (min) 15

Intersection Capacity Utilization 42.0%

Splits and Phases: 659: Union & Madison

ICU Level of Service A

Appendix: PEQI/BEQI Calculations

City of Pasadena
Department of Transportation
Pedestrian Environmental Quality Index
Calculation Summary
--- Segment ---

)				
Segment: Limits:	Madison Avenue Between Walnut Street and Union Street						
							10 0 1 0 d d + 1 0 0
					חוות	<u>'1</u>	פסמנוומסמוומ
				(East side)	de)		(West side)
				Surveyad		1	Surveyed
					3)		
		ı		Kesponse			Kesponse
		Score	Indicator	Category			Category
	Indicator Category	Weight	Response	Score	e Response		Score
Traffic							
	Number of Lanes	0.64	Shared/Pedestrian-only street	20	Shared/Pedestrian-only street	v street	20
	Posted Speed Limit	0.64	25 mph or none posted	4	25 mph or none posted	sted	4
	Traffic Volume ¹	0.64	7/7/000 1	-	7/ 000 9-000 1		7
	Street Traffic Calming Features (TCFs)	0.64	None	0	None		0
				35			35
Street design				3			3
	4+10:14V	10.1	‡ C 7 O		0 13 64	-	CC
	Width of Sidewalk	T.35	11.71-8	07	8-12 II		70
	Width of Throughway	1.35	6-8 ft	17	6-8 ft		17
	Large SW Obstructions	1.35	None	22	None		22
	Sidewalk Impediments	1.35	None	24	None		24
	Trees	1.35	None	0	Continuous		6
	Driveway Cuts	1.35	More than 5	0	More than 5		0
	Presence of Buffer	1.35	Non-Peak Parallel Parking	6	Non-Peak Parallel Parking	ırking	6
	Planters/Gardens	1.35	Yes	4	Yes		4
	Public Seating	1.35	ON	0	ON		0
				96			105
Land Use	9.						
	Public Art/ Historic Sites	0.15	No	0	ON		0
	Retail Use/Public Places	0.15	None	0	None		0
				0			0
Perceived Safety	A1						
	Lighting	0.34	None	0	None		0
	Illegal Graffiti	0.34	No	2	ON		2
	Litter	0.34	No	11	No		11
	Empty Spaces	0.34	Yes	0	Yes		0
				13			13
Domain	Ę	Score					
Summary	^	Weight		Category Score		Cs	Category Score
	Traffic	0.64	Traffic	35	Traffic		35
	Street Design	1.35	Street Design	96	Street Design		105
	Land Use	0.15	Land Use	0	Land Use		0
	Safety	0.34	Safety	13	Safety		13
		2.48		144			153
			PEQI Score	PEQI Score 58 Northbound (Fast side)		PEQI Score 62	62
-				וטטמוומ לבמפר פומכן		7 ** \ 2 : \	באר אומבי

¹Traffic volumes are based on segment volumes, not directional traffic volumes.

City of Pasadena Department of Transportation Bicycle Environmental Quality Index Calculation Summary

Segment: Madison Avenue

Limits: Between Walnut Street and Union Street							
				Northbound			Southbound
				(East side)			(West side)
				Surveyed			Surveyed
				Response			Response
	Score	Indicator		Category	Indicator		Category
Indicator Category	Weight	Response		Score	Response		Score
Street design							
Dresence of a Marked Area for Biovole Traffic	2.05			_			
Width of Bibo Land	2.03			+ C			+ C
Piovolo I and Markings	2.03			0 <			0 5
BICYCIE LATIE IVIATKITIBS	7.05	NOTIE		4	None		4
Connectivity of Bicycle Lanes	2.05	ON		13	ON		13
Pavement Type/Condition	2.05	Smooth Surface		40	Smooth Surface		40
Street Slope	2.05	< 5%		27	< 5%		27
Driveway Cuts	2.05	More Than Five		11	More Than Five		11
Presence of Trees	2.05	None		15	Continuously Lined		29
				114			128
Vehicle Traffic							
Posted Speed Limit	1.39	25		29	25		29
Traffic Volume - Avg # of Vehicles Per Day	1.39	1,000 - 5,000		19	1,000 - 5,000		19
Percentage of Heavy Vehicles	1.39	Less than 5%		36	Less than 5%		36
Parallel Parking Adjacent to Bicycle Lane/Route	1.39	TPP 7 ft - 9 ft		22	TPP 7 ft - 9 ft		22
	1.39	0 TCF		11	0 TCF		11
Number of Lanes	1.39	Ţ		36	Ţ		36
				153			153
Safety/Other			•			•	
Presence of Bicycle Lane Signs	0.42	No		15	No		15
Bicycle/Pedestrian Scale Lighting	0.42	No		15	No		15
				30			30
Land Use							
Bicycle Parking	99.0	No		12	No		12
Retail Use	99.0	0		14	0		14
Line of Site	99.0	Clear Line of Sight		36	Clear Line of Sight		36
				62			62
Domain	Score						
Summary	Weight		Min Score	Category Score		Min Score	Category Score
Street design	2.05		62	114		62	128
Vehicle Traffic	1.39		59	153		59	153
Safety/Other	0.42		30	30		30	30
Land Use	99.0		33	62		33	62
	4.52		184	359		184	373
			,			,	
		BE	BEQI Score $^{ m 1}$	39		BEQI Score ¹	42
		NO	Northbound (East side)	st side)		Southbound (West side)	/est side)

 $^{^1\,\}mathrm{BEQI}$ calculation did not consider intersection indicators.