
Court Upholds Cities' Ability to Regulate Communications Facilities on Aesthetic Grounds

Related Practice

Related 1 factice

~ OCTOBER 30, 2009

In the recently decided Sprint PCS Assets LLC v. City of Palos Verdes Estates

(Case No. 05-56106; 2009 U.S. App. LEXIS 22514), the Ninth Circuit Court of
Appeals held that cities can regulate, on aesthetic grounds, communications
facilities locating within a public right-of-way. The decision casts important light on
the scope of cities' interests in regulating the aesthetics of city streets under the
federal Telecommunications Act of 1996 (TCA). It also interprets narrowly the
provisions of the TCA requiring that cities consider the adequacy of a carrier's

coverage grid before denying facility applications.

The City of Palos Verdes Estates enacted an ordinance allowing the city to deny permits for wireless communications facilities based on "adverse aesthetic" impacts arising from the proposed time, place and manner of use of the public property." The city denied on aesthetic grounds two applications filed by Sprint. The city's expressed planning concerns included the use of streets as part of the city's historic fabric, park borders and contributors to residential ambiance. These concerns were "important social, expressive, and aesthetic functions" granted to cities under the California Constitution and recognized as exempt from federal authority under the TCA. Sprint sued the city, contending that the denial violated both California law and the TCA. Although the trial court granted Sprint's motion for summary judgment, the Ninth Circuit reversed the decision and upheld the city's denial of permits on aesthetic grounds.

The Ninth Circuit found that the city's decision was consistent with the TCA's reservation of local land use control and that the city's decision was based on "substantial evidence contained in [the] written record." The court also found that Sprint's rights to access the right-of-way pursuant to the California Public Utilities Code did not preempt the city's aesthetic considerations in denying

<u>Telecommunications</u>
<u>Municipal & Redevelopment Law</u>

BEST BEST & KRIEGER®

Sprint tried to characterize the city's aesthetic regulations as a virtual ban on facilities, or a "significant gap," as prohibited under the TCA. The Court of Appeals disagreed with Sprint, noting that the record indicated that Sprint's radio frequency propagation maps were insufficient to establish a "significant gap" in coverage.

This case represents a clear recognition of California cities' ability to regulate communications facilities under the TCA on aesthetic grounds. It also provides useful guidance regarding how much evidence a telephone company must provide under federal law to support its claims that it has a gap in coverage that a city must permit to be filled. It is important to note that all local regulations regarding communications facilities must still be supported by substantial evidence and may not effectively prohibit the provision of wireless service.

Regulation of Wireless Telecommunications Facilities

Regulation of wireless telecommunications facilities, including towers and antennae, is to some extent governed by the federal Telecommunications Act of 1996 ("TCA" or the "Act"), which amends Title 47 of the United States Code (U.S.C.), Section 332, pertaining to mobile services and, with limitations, may be controlled by local zoning, if it exists. In essence, the Act provides certain exceptions to the authority of a state or local government, or an instrumentality thereof, to regulate wireless telecommunications facilities. However, aside from specified exceptions, nothing in the Act "shall limit or affect the authority of a State or local government or instru-

mentality thereof over decisions regarding the placement, construction, and modification of personal wireless service facilities." Case law provides that a wireless telecommunications facility is subject to valid local zoning regulations and, in certain cases, may constitute a subdivision or land development subject to other appropriate regulations.²

Five limitations on state or local authority as cited in the Act, with commentary on each, are as follows:

1. The regulation of the placement, construction, and modification of personal wireless service facilities by any State or local government or instrumentality thereof shall not unreasonably discriminate among providers of functionally equivalent services 47 U.S.C. Section 332(c)(7)(B)(i)(I).

The TCA forbids discrimination between functionally equivalent providers of wireless telecommunications, even if a decision to deny an application was founded on substantial evidence and did not result in prohibiting wireless services.³ In order to prove discrimination, the provider must make two primary showings. First, it must show that it was discriminated against by the local government agency. Second, it must show that such discrimination was unreasonable.⁴ To satisfy the first prong of this test, the plaintiff

¹ 47 U.S.C. § 332(c)(7)(A).

² See Marshall Tp. Bd. of Supervisors v. Marshall Tp. Zoning Hearing Board, 717 A.2d 1 (Pa. Cmwlth. 1998); Tu-Way Tower Co. v. Zoning Hearing Board (Tp. of Salisbury), 688 A.2d 744 (Pa. Cmwlth. 1997) (wireless telecommunications facilities and augmentations thereof did not constitute "subdivisions" or "land development," but were subject to zoning regulation). But cf. White v. Tp. of Upper St. Clair, 799 A.2d 188 (Pa. Cmwlth. 2002) (lease of property to wireless telecommunications provider to construct facility constituted a subdivision). See also Upper Southampton Tp. v. Upper Southampton Tp. Zoning Hearing Board, 885 A.2d 85 (Pa. Cmwlth. 2005) (land use development approval was required for construction of billboards), appeal granted, 895 A.2d 1265 (Pa. Apr. 4, 2006).

³ Schiazza v. Zoning Hearing Bd., Fairview Tp., York County, Pennsylvania, 168 F. Supp. 2d 361 (M.D. Pa. 2001).

⁴ APT Pittsburgh Ltd. Partnership v. Lower Yoder Tp., 111 F. Supp. 2d 664, 674 (W.D. Pa. 2000).

Regulation of Wireless Telecommunications Facilities

must demonstrate that providers of "functionally equivalent" services were treated differently than it was treated.⁵ Even if this is the case, the plaintiff must also show that the discrimination was unreasonable. It is unreasonable discrimination if the plaintiff can demonstrate that the proposed wireless service facility site is *not* substantially more intrusive than existing sites "by virtue of its structure, placement, or cumulative impact."

2. The regulation of the placement, construction, and modification of personal wireless service facilities by any State or local government or instrumentality thereof shall not prohibit or have the effect of prohibiting the provision of personal wireless services. 47 U.S.C. Section 332(c)(7)(B)(i)(II).

In order for an unsuccessful provider applicant to show a violation of subsection 332(c)(7)(B)(i)(II), it must demonstrate two things:

- First, the provider must show that its facility will fill an existing significant gap in the ability of remote users to access the national telephone network. In this context, the relevant gap, if any, is a gap in the service available to remote users. Not all gaps in a particular provider's service will involve a gap in the service available to remote users. The provider's showing on this issue will thus have to include evidence that the area the new facility will serve is not already served by another provider.^{7,8}
- Second, the provider applicant must also show that the manner in which it proposes to fill the significant gap in service is the least intrusive on the values that the denial sought to serve. This will require a showing that a good faith effort has been made to identify and evaluate less intrusive alternatives, e.g., that the provider has considered less sensitive sites, alternative system designs, alternative tower designs, placement of antennae on existing structures, etc.⁹

Based on this interpretation of Section 332(c)(7)(B)(i)(II), it is not essential for a provider whose application has been turned down "to show an express ban or moratorium, a consistent pattern of denials, or evidence of express hostility to personal wireless facilities." However, it is essential for the provider to demonstrate *more than* it was not granted "an opportunity to fill a gap in its service system." 11

⁵ APT Pittsburgh Ltd. Partnership v. Lower Yoder Tp., 111 F. Supp. 2d at 674.

⁶ Schiazza v. Zoning Hearing Bd., Fairview Tp., York County, Pennsylvania, 168 F. Supp. 2d at 371 (citations omitted).

⁷ APT Pittsburgh Ltd. Partnership v. Penn Tp., 196 F.3d 469, 480 (3d Cir. 1999).

⁸ "[E]ven if the area to be served is already served by another provider, the TCA may invalidate the denial of a variance if it has the effect of unreasonably discriminating between providers. Securing relief under this provision of the statute will require a showing that the other provider is similarly situated, i.e., that the 'structure, placement or cumulative impact' of the existing facilities makes them as or more intrusive than the proposed facility." 196 F.3d at 480 note 8.

^{9 196} F.3d at 480.

¹⁰ Id.

¹¹ Id.

Pennsylvania Legislator's Municipal Deskbook, Third Edition (2006)

3. A State or local government or instrumentality thereof shall act on any request for authorization to place, construct, or modify personal wireless service facilities within a reasonable period of time after the request is duly filed with such government or instrumentality, taking into account the nature and scope of such request. 47 U.S.C. Section 332(c)(7)(B)(ii).

"Litigation under section 332(c)(7)(B)(ii) has arisen generally under two types of circumstances. The first is when local governmental entities have initiated moratoria on the granting of PWS [personal wireless service] facility siting permits or the processing of applications altogether The other area in which section 332(c)(7)(B)(ii) litigation has arisen is when the local entity simply takes too much time to grant or to deny the PWS provider's application." ¹²

With respect to moratoria, the Pennsylvania Supreme Court, in *Naylor v. Township* of *Hellam*, stated that "the legislature has not acted to authorize municipalities to meet their planning objectives through the suspension, temporary or otherwise, of the process for reviewing land use proposals."¹³ The court also indicated that the ability of municipalities to initiate moratoria is neither an expressly granted power nor an extension of, or incidental to, any power to regulate land use or development in Pennsylvania.¹⁴ Therefore, until the Commonwealth enacts legislation that authorizes moratoria, this potential circumstance is most likely a nonissue.

On the possible time concern, Act 2 of 2002 and Act 43 of 2002, both of which amend the Pennsylvania Municipalities Planning Code (MPC), 15 have tightened and made more equitable hearing requirements for variance and special exception applications before the zoning hearing board and conditional use applications before the governing body. The MPC now specifies that failure to conduct or complete, as well as commence, a hearing in a proceeding before the zoning hearing board or in a conditional use request before the governing body in compliance with specified hearing procedures results in a deemed approval. With these amendments, time is most likely a nonissue as well.

¹² Matthew N. McClure, Comment, Working Through The Static: Is There Anything Left to Local Control in the Siting of Cellular and PCS Towers After the Telecommunications Act of 1996? 44 Vill. L. Rev. 781 (1999) (citations omitted).

¹³ Naylor v. Township of Hellam, 773 A.2d 770 (Pa. 2001).

¹⁴ Id.

¹⁵ 53 P.S. § 10101 et seq. ("Pennsylvania Municipalities Planning Code").

Regulation of Wireless Telecommunications Facilities

4. Any decision by a State or local government or instrumentality thereof to deny a request to place, construct, or modify personal wireless service facilities shall be in writing and supported by substantial evidence contained in a written record. 47 U.S.C. Section 332(c)(7)(B)(iii).

This section states that "any decision to deny a request...shall be in writing." It is also evident that any written negative decision shall be "supported by substantial evidence contained in a written record." However, this begs two questions: (1) What constitutes a "decision...in writing?" and (2) What constitutes "substantial evidence?"

"Decision . . . in Writing"

The MPC requires a "decision . . . in writing" for most subdivision and land development and zoning proceedings, including special exceptions, variances, and conditional uses. In the case of a proceeding before the zoning hearing board for a special exception or a variance, or before the governing body for a conditional use request, the zoning hearing board, the hearing officer, or the governing body, as the case may be,

shall render a written decision or, when no decision is called for, make written findings on the application.... Where the application is contested or denied, each decision shall be accompanied by findings of fact and conclusions based thereon together with the reasons therefor. Conclusions based on any provisions of this act [the MPC] or of any ordinance, rule or regulation shall contain a reference to the provision relied on and the reasons why the conclusion is deemed appropriate in the light of the facts found.¹⁶

Requiring a more comprehensive written decision, which includes findings of fact and conclusions of law tied to the record, would facilitate court review if a decision is appealed.¹⁷

"Substantial Evidence"

"The [United States] Supreme Court explained, in the context of the deference to be afforded to NLRB [National Labor Relations Board] findings, that substantial evidence is more than a mere scintilla. It means such relevant evidence as a reasonable mind might accept as adequate to support a conclusion." This standard is applied when determining if decisions under the TCA are supported by substantial evidence. 19

A court in its review under the substantial evidence standard is not "to weigh the evidence contained in that record or substitute its own conclusions for those of the fact-finder" or the local zoning authority.²⁰

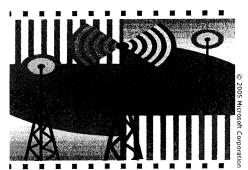
¹⁶ 53 P.S. 10908(9) (MPC, Section 908(9)). See also Simonitis v. Zoning Hearing Board of Swoyersville Borough, 865 A.2d 284 (Pa. Cmwlth. 2005), and 53 P.S. 10913.2(b)(1) (MPC, Section 913.2(b)(1)).

¹⁷ Schwamberger, Christine, Zoning and Land Use in Pennsylvania, Cell Tower Regulation, Lorman Education Services, Eau Claire, Wisconsin, 2002.

¹⁸ Sprint Spectrum L.P. v. Zoning Hearing Bd. of Willistown Tp., 43 F. Supp. 2d 534 (E.D. Pa. 1999), citing Universal Camera v. NLRB, 340 U.S. 474, 488, 71 S. Ct. 456, 95 L. Ed. 456 (1951) (internal quotations omitted).

¹⁹ Sprint Spectrum L.P., 43 F. Supp. 2d at 540.

²⁰ AT&T Wireless v. Zoning Board of Adjustment of the Borough of Ho-Ho-Kus, 197 F.3d 64, 71 (3d Cir. 1999), citing Williams v. Sullivan, 970 F.2d 1178, 1182 (3d Cir. 1992).


Pennsylvania Legislator's Municipal Deskbook, Third Edition (2006)

Rather, a court is to "determine whether there is substantial evidence in the record as a whole to support the challenged decision." Moreover, when the court evaluates substantial evidence, local zoning laws govern the weight to be given to it. 22

To enable a meaningful judicial review, a written decision cannot only rely on conclusory assertions, but must also provide some evidentiary foundation to support each assertion.²³ Moreover, "generalized concerns" of opposing parties would not be considered substantial evidence for an unfavorable decision against a personal wireless services provider.²⁴

5. No State or local government or instrumentality thereof may regulate the placement, construction, and modification of personal wireless service facilities on the basis of the environmental effects of radio frequency emissions to the extent that such facilities comply with the Commission's regulations concerning such emissions. 47 U.S.C. Section 332(c)(7)(B)(iv).

This provision prohibits state or local regulation of wireless telecommunications facilities by ordinance or statute or the courts "on the basis of the effects of radio frequency emissions." It was enforced, for example, in *Omnipoint Corp. v. Zoning Hearing Bd. of Pine Grove Tp.*,²⁵ where the court held that the zoning hearing board could not consider the potential health effects of a proposed wireless telecommunications facility, as alleged by residents, as substantial evidence pursuant to Sections 332(c)(7)(B)(iii), (iv) of the TCA.

Disputes

If a wireless service provider asserts that the state or local government has violated any of the five limitations or conditions cited above, ²⁶ that provider may seek relief in a state or federal court, and the court must hear and decide such action expeditiously. ^{27, 28} An unsuccessful applicant may also petition

²¹ AT&T Wireless v. Zoning Board of Adjustment of the Borough of Ho-Ho-Kus, 197 F.3d at 71, citing Universal Camera Corp. v. NLRB, 340 U.S. 474, 491, 71 S. Ct. 456, 95 L. Ed. 456 (1951).

²² Sprint Spectrum L.P. v. Zoning Hearing Bd. of Willistown Tp., 43 F. Supp. 2d at 540, citing Cellular Telephone Co. v. Town of Oyster Bay, 166 F.3d 490, 493-94 (2d Cir. 1999).

²³ Omnipoint Communications, Inc. v. City of Scranton, 36 F. Supp. 2d 222 (M.D. Pa. 1999), citing Virginia Metronet v. Board of Supervisors of James City County, 984 F. Supp. 966, 973 (E.D. Va. 1998).

²⁴ Omnipoint Communications, Inc., 36 F. Supp. 2d at 229, citing PrimeCo Personal Communications, L.P. v. Village of Fox Lake, 26 F. Supp. 2d 1052, 1062 (N.D. Ill. 1998).

^{25 181} F.3d 403 (3d Cir. 1999).

 $^{^{26}}$ 47 U.S.C. §§ 332(c)(7)(B)(i)(I), (i)(II), (ii), (iii), (iv).

²⁷ See Local Government Regulation of Wireless Telecommunication Facilities, 2d ed., Governor's Center for Local Government Services, Pennsylvania Department of Community and Economic Development, Harrisburg, Pa., 2002, p. 4.

²⁸ 47 U.S.C. § 332(c)(7)(B)(v).

Regulation of Wireless Telecommunications Facilities

the Federal Communications Commission if it claims that the state or local government based its siting decision in a manner inconsistent with clause (iv), which, again, prohibits state or local regulation of wireless telecommunications facilities "on the basis of the environmental effects of radio frequency emissions."²⁹

Resources

Given that the regulation of wireless telecommunication facilities has been and continues to be an issue in many locales, there are numerous court cases and many publications on this topic. With regard to specific questions concerning the regulation of these facilities, we suggest that local officials consult with their municipal solicitor and recommend review of some other publications:

Local Government Regulation of Wireless Telecommunication Facilities, 2d ed., Pennsylvania Department of Community and Economic Development, Harrisburg, Pennsylvania, 2002, 16 pages.

Local Officials Guide, Siting Cellular Towers, What You Need To Know, What You Need To Do, National League of Cities, Washington, D.C., 1997, 26 pages.

The Telecommunications Act of 1996: What It Means to Local Governments, National League of Cities, Washington, D.C.

Taxation of Cellular Towers

The Pennsylvania Commonwealth Court in Shenandoah Mobile Co. v. Dauphin County Bd. of Assessment Appeals³⁰ upheld a court of common pleas decision which held that a cellular communications tower and related equipment are taxable realty. Because cellular towers are not specifically listed in the assessment laws as subject to or exempt from taxation, the Commonwealth Court applied a three-part test established in Appeal of Sheetz, Inc.³¹ to determine whether cellular towers constitute "real estate" under the General County Assessment Law. When applying this three-part analysis in Shenandoah Mobile Co., the court concluded that a cellular communications tower was a part of the realty and therefore taxable as real estate.

²⁹ 47 U.S.C. § 332(c)(7)(B)(iv), (v).

^{30 869} A.2d 562 (Pa. Cmwlth. 2005).

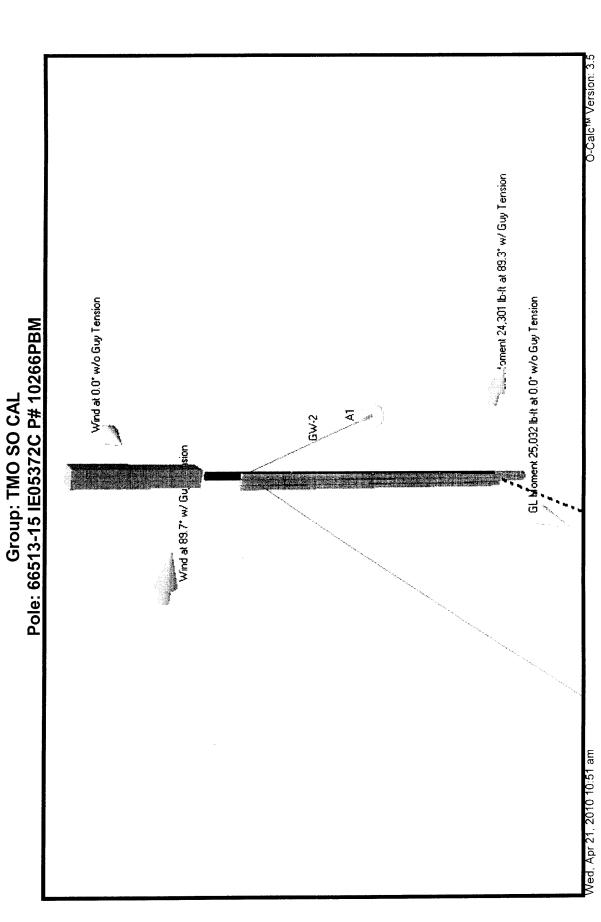
³¹ 657 A.2d 1011 (Pa. Cmwlth. 1995), petition for allowance of appeal denied, 542 Pa. 653, 666 A.2d 1060 (1995). In Sheetz, the court had to determine whether a gasoline pump canopy was a fixture and, thus, taxable as realty, or whether it was personalty, and therefore not subject to realty tax.

Attachment E – Petition Summary Wireless Telecommunications An Opportunity for Civic Excellence July 2011

Over one month from June 4th to July 4th, 2011—and 10 hours of canvassing pedestrians walking on Grand Avenue in Pasadena—93 individuals signed a petition indicating support for the appeal of an antenna planned for Grand Avenue and California Boulevard. Two-thirds (62) of the petitioners live in Pasadena. See the attached *Petition for Consideration by the City of Pasadena* with signatures.

Grand Avenue acts like a park, attracting pedestrians and bicyclists from neighboring cities as well as Pasadena. Of the 93 individuals who signed the petition, one-third were from cities other than Pasadena: 12 from South Pasadena; 10 from Los Angeles; two from Altadena; one from Alhambra; one from La Canada; one from Sierra Madre; and four from outside the immediate area (one each from Montebello, Encino, Rowland Heights and Simi Valley).

As one would expect, most signed the petition on a Saturday, Sunday or the Fourth of July holiday, although pedestrians could be seen walking along Grand Avenue every day of the week. Many of the pedestrians had pets. One woman said she suffers from MS, has been walking Grand Avenue everyday for 10 years, and is still going strong! Another said she was taking her granddaughter, who lives out-of-state, to see a new puppy down the street. A couple, who lives in Los Angeles, noted that they love the West Pasadena area and are hoping to move to the neighborhood. A pedestrian from Encino identified herself as a "Pasadena lover" and said she drives to Pasadena every week or so just to walk on Grand Avenue!


Avenue instead.	,	
HII Name	Address	E-mark
Virland A Ealy	1080 Busch Garden Ct.	
mate mani	2604 Birch ST	
Michelle Trafficante	1305 El Cerrit Circle.	Solver -
LIA THATRIBO	78 225 Grand Ave -91	
Robert Wohr	985 5 orange grove # Zul	Rob-Wohr Ø1@Khoo com
JOHN KRUGER	985 S. ORANGEGRIA	21 "
David Simhins	575 S. Grand Are	dleesing mar.com
Sanet Chillingworth		Ki,
an Buke	629 BIADLOIDST	
Youn Rouse	230 6.6RAND	rouse 505 epachell.net
Janet Emmett	1021 S. Orange Grove	#209
Jesse Gimen	406/ Glevalbyr Vr.	
nay los Nevins	561 Bradford A. L.A	Extreme.
Catherine Schaller	985 S. orange Give	
Major Casani	2815. Grange Gove	meganosoniamsn.com.
Havette Lessel		19 gess @ Gmail, com
Carrie & nolathy	-4235. Hadisonalu.	COOKIE 7600@ hotmail.
MARYA KALIN	685 BUSCH CARRENT	a mokahlegmail.com
Cald laters	VASNOENH	CECILIUMUS E EARNINK.
1 Page	PASADINA.	NeT.
	1.1740LV4.	

	Avenue instead.			
	Name	Address	E-mail	
15/11	LANIEZA SIMPSON	1418 BRIXTONRD	PATADENA, LA Simpson	∍,
	Dalia Andauskas	2202 India 8.	hos Angells gmail	can
	Aliette Pivers	2174 Audrey Pl	L.A. CA 90039 alietter @	AOL
	Angela Cruz	440 Arroyo Terrane	ang-cruza yahoo.com	
	LEE SALAS	1400 BRIXTON PD.	PASADONA, CA	
	Mirell O'Brien	1241 HilDrive	SKYE 8484 EYAKW.con	
	Danstinules	740 CIMPA VIJTA	Stimular ecocion	
	MARIE GAUTHIER	240 N GRAND	MCGAU @ YAHOO COM	
	KAZUKO NAKABA	699 W. CALIF BL		
	SALLY CLAPK	721 So. GrandAve	Hasadena	
	Battall	1765 Hilliste Nd	Pasadona	
1	Mys Ooles	1582 Homewood Dr. Ak	foding CA	
	KysciuA Mª CLURE	1107 S. DEANGE GEOVE	PASADENA, CA 91105	
,	TERESITA GARCIA	219 N. Alorado 84	Lox Frageles, 90026	
6/17	Pat Dashner	866 S. ArroyoBh	d Pasadena 91105	<u> </u>
	Jennifer Tucker		South Pasadena 491030	
	Wendy Clough	2115, Ovany Gorre Blud	Pascedoug 91105	
	yolmda henliy	1065, MMGGa	e foretena 91105	
		v	v ·	

Name	Address	E-mail
Alexander Miller	49 S. Grand Ave.	Ajmiller @ usc. edu
MJamo Kay	6871 Los Altos Pl.	LA Milanokaya com
Joseph Jan	L.	11 Diviember al com
Jerry Mitall	1035 S. ARROYO	JERRY STAURO ADL. COM
/19/11 Francis D. Logan	480 S. Ovange Grove	
Stephany Stamatis	821 N. WILLOX AVE Montebello, CA 90040	Stepharoonski Chotmail. com
Knisten told	694 Nonwood Dr.	
Beline Situ	200 S. Pasadena A	
DAVE SHORE	2005, Pasales	
1/2/11 Linda Squitt	700 orage brow Dear.	
	To Overge Grave To	
Kary Kambana	8755 Grand Ave	<i></i>
Mary am McPhartin	365 Marie Ave 1	
714 Harringer	365 Marie Ave, L	A
HARRY GOPNER	- 620 Chanter Par	<u>~</u>
Lows Miller	686 La loma 14	rpmillerjr Qaol. com
DAVID DAPPER	509 ARBORS	
ROBERT ETTINGER	1617 MAPENGO AVE	

Avenue ins	icau.			
- Nai	me	Address	E-mail	
Felix	Torres	4127 marmion way	ftopte@ small	lom
Eleno	& Lloyd	1054 S. Annoyo Bird	ISAONA' '	
	- Hoyel	10645. ARROYD Bld.		
7/3/11 Sana		38 N Bu Due 9/106		
NAOM S.	AIN-MACAN	1990 Windergla So. fac	3	
DAWA C	DSTENSON	555 S.GRAD OSTENSON. BR		
Jack 6	Brickson	1130 Busch Gudon C	TNUTES BE GLOSAL	·NET
_	Edwards	53/2 Bradford St	andhua de	
	e Wannier	1446 Rose Villa St.	dwannier@n	16, com
Azu	the	lood Holly Visla Dr		
Tatrave	-banksta	11 5. Delvey St		
Hector	2 ALVARADO	111 C. DELARGET		
IH G	UNIMBE	533 S. Grand		
PATRICES	SAPPOR	ENCINO, LA	" PASADETA LOVER"	
Kathlean	MCCarkly	647 PalisAMC St.	kmccarthedslex	
Centh	uz Mousses	414 Magnobes St	n adho	CM
Josep .	66.40/	1915 C	Du air South	Pes
14/11 Lus 1	belded	362 Bellefortan	Leranberra de como que	rel. Com
ntca	oh_ ()	1016 So Carlogo Mas.	Liz Baldridge	
4 Page				

	Avenue instead.		
	Name	Address	E-mail
7/4/11	Dene Baldrike	562 bellepotant	+ ebolde ste global. We.
iont'd	Mary Sohnerder	757 S. ORange Geore	
	LOCAN TAM	283 S. HUDSON AUE	
	Ray ATAR	1610 VISTODAND	
	BRIAN OFTAL	18443 Buttonwood Ln. Rowland	1.71
	RICH JHONG		
	DAVID OROSCO	18833 CABRAL ST. L. A	
	ERICK OPLE	CABL STONE VIEW (SIM	i puer
	Anne Homingy	4520 line Inc Inc	
	TEDDIE HARRINGGE	672 Stone Huest De	
	Therese Harriage	2433 Ronriepa	
	Joan Wood	350 S. Dange Grow	e Jeru Compr. Com
	Patty Petano	192 W Soldwin Suna Mod	h <u> </u>
	Eschor Buly	1398 Marianna	
,	Margaret allen		markyal Ochenter, net
		285 W. Calif. Bl.	
	Aplat On Faye Tommary	1727 ROSCWALKWAY 1712 Belmont Ave	
	Fage Commany	1712 Belmost Ave	
	NAOHI EGAMI	2199 LAUNEL ST.	

07/11/2011 Item 13 Submitted by Rob Searcy

	Pole Loading Analysis Report	
1	$\overline{}$	
'	_	_
	2	2
	V	2
	2	_
•	C	3
	7	
•	◁	4
	_	4
	2	_
	=	
۲	$\overline{}$	ļ
	2	2
	_	
ŀ	_	
	đ)
*	7	
1	ĭ	
•		7
Σ		
	ر)
	σ	j
(7-()
	٦	
((
	4	
	Smose ()
	Ĉ	5
	Ĕ	4
	7	3
(Š	Ś
•		,


Osmose	O-Calc	Pole L	Osmose O-Calc Pole Loading Analysis Report	s Report				Licensed To:
Group ID:		TMO SO CAL	Pole Length / Class:	45 / 1 Code:	Code:	GO 95	GO 95 Structure Type:	DEADEND
Pole ID:	66513-15 IE05372\	66513-15 IE05372C P# 10266PBM	Pole Species:	DOUGLAS FIR	NESC Rule:	•	Status:	At Installation
Related To		PARENT	Setting Depth (ft):	00.9	Construction Grade:	V	Strength Factor:	0.25
Region:		Los Angeles	Groundline Circumference:		Loading District:	Light	Transverse Wind LF:	1.00
District:	PAS/	ASADENA Power	Groundline Fiber Stress (psi):	8,000	Ice Radial Thickness (in):	0.00	Wire Tension LF:	1.00
Line:	585	88 S. Grand Ave	Fiber Stress Height Reduction	°N	Wind Speed Applied (mph):	55.90	Vertical Load L.F.	1.00
Owner:		Joint	Allowable Moment at 0.0 ft:	41,957	Wind Pressure (psf):	8.00		

Maximum Ca	Maximum Capacity Utilization: 59.0% with wind at 89.7°	59.0%	with wind at	l	at 0.0 ft	Wind w/o Guy Tension: 0.0°	nsion: 0.0°	Moment w	Moment w/o Guy Tension 25,032 lb-ft at 0.0°	5,032 lb-ft at 0	°0.
Groundline Ca	Groundline Capacity Utilization: 59.0%		with wind at 89.7°		at 0.0 ft	Wind at 89.7°		Moment w	Moment w/o Guy Tension 24,324 lb-ft at 87.4°	4,324 lb-ft at 8	7.4°
Vertical Buckling Capacity Utilization: 4.0% with wind at 0.0°	spacity Utilization:	4.0%	with wind at		at 27.2 ft	Wind at 89.7°		Moment w	Moment with Guy Tension 24,301 lb-ft at 89.3°	24,301 lb-ft at	89.3°
ANCHORS: ADEQUATE	UATE	GU	GUY WIRES: ADEQUATE	ADEQUA'	re						
	% of Canacity		Required Tension (lb)	% of	Wind Anole	Required Tension (Ib)	Allowable	Wind	Required Tension (lb)	% of	Wind
A1) Power anc	%9	GW2	1,085	22%						200	
Manual		GW1	675	13%	180°						

GROUNDLINE LOAD SUMMARY:* 0.00" Ice + 55.90 mph Wind at 89.7° Residual Moment 24,301 lb-ft at 89.3° Allowable Moment 41,957 lb-ft	JOAD SUN	MMARY	:* 0.00" IA	ce + 55.90	mph Wir	d at 89.7°	Residua	Mome	nt 24,3	01 lb-ft	at 89.3°	Allowable Mo	ment 41,957 lb-f	r
	Shear	Percent	Bending	Percent	Percent	Bending	Vertical	l Vertical	ical	Total	Percent	Vertical Load Summary:	Summary:	
	Load	Applied	Moment	of Applied	of Pole	Stress	Load	Stress		Stress	of Pole	Buckling Constant:	ıt:	0.70
	(lb)*	Load	(lp-ft)	Moment**	Capacity	(psi)	(lb)	(psi)	si)	(psi) (Capacity	Buckling Column Height (ft)	Height (ft):	27.23
Power Conductors:	0	0.0	0	0.0				0	0	0	0.0	Buckling Section	Buckling Section Height (% Col. Hgt.):	33.90
Comm. Cables:	0	0.0	0	0.0		_	_	0	0	0	0.0	Buckling Section Diameter (in)	Diameter (in):	12.48
Pole:	290	28.3	5,218	21.5	_	249	-1,612	12	=	-260	13.0	Min. Buckling Di	Min. Buckling Diameter at GL (in):	6.79
Crossarms:	0	0.0	0	0.0		_		0	0	0	0.0	Diameter at Tip (in)	in):	8.59
Insulators:	0	0.0	0	0.0			_	0	0	0	0.0	Diameter at GL (in):	in):	13.69
Transformers:	0	0.0	0	0.0		_	_	0	0	0	0.0	Modulus of Elasticity (psi):	icity (psi):	1,600,000
Equipment:	724	70.7	18,736	77.1	4	893	3 -1,098	8(-1	-901	45.0			
Guy Wire Loads:	10	1.0	357	1.5	0.0	_		œ	0	-17	0.0	Buckling Load Capacity at Height (lb):	acity at Height (lb):	89,909
Guy Wire Reactions:	0	0.0	-10	0.0	0.0	_) -538	88	4	ć.	0.2	Buckling Load Applied at Height (lb):	lied at Height (lb):	3,604
Pole Residual Load:	1,023	100.0	24,301	100.0	57.9	1,158	3,256	99	-22	-1,180	59.0	Buckling Load Margin of Safety:	gin of Safety:	23.95
Pole Reserve Capacity:	y:		17,656		42.1	842	~ 1			820	41.0			
LOAD SUMMARY BY OWNER	Y BY OW	NER												
Pole			5,218			249	9 -1,612	12	11-	-260	13.0			
Communication			9,664			461		-648	4	-465	23.3			
Power			347			17		-546	4	-20	1.0			
TMOBILE			9,072			432		-450	-3	-435	21.8			
Totals			24,301			1,158	8 -3,256	56	-22	-1,180	59.0			
Equipment:	Owner	ner	1	Horiz. Ga	Gap to Offset	et Rotate	Incline	Unit	Unit	Unit	Unit Unit	it Shape	Offset Wind	Moment
•			Height		Pole Angle	e Angle	Angle V	Weight F	Height (in)	_	Diameter Length	gth Factor	Moment Momen	r at GL
18IN DIA BY 126IN W/SHROUD RADOME TMOBILE	JD RADOME TMO	JBILE	45.00	0.00		1	L		26.00	00.8		9.1 00		9.072
1/2 IN DIA X 26 IN THRU BOLT	T Con	Communication	31.00		0.0 00.9	0.06 0			0.50		0.50	_		22
18 CHANNEL STRUT 15/8 12 GA PS 520 2 Communication	GA PS 520 2 Con	nmunication	31.00	~	7.50 0.		0.0	4.0	1.63	1.63	- 18.00		0 7	7
1/2 IN DIA X 26 IN THRU BOLT	⊺ Cor	Communication	21.00	7.72		0.06	0.0	2.0	0.50	- 0	0.50	- 1.0	0 15	15
18 CHANNEL STRUT 15/8 12 GA PS 520 2 Communication	GA PS 520 2 Con	nmunication	21.00	_	0.0		0.0	4.0	1.63	1.63	- 18.00		0 5	5
** Printed: Wed 21-Apr-2010 10:50 AM	110 10:50 AM		Version: 3	c:	' Wor	Page Worst Wind per Guy Wire	Page I , Wire	² Wind at 89.7°	89.7°	* includes	includes Load Factor(s		not including Guy Wire Tension	

	Keport
	S
•	S_1
-	<u>^</u>
	Analysis h
4	⋖
	$\vec{\sigma}$
	Loading A
	ğ
L	3
_	Pole
-	0
4	7
Ξ	
-	$\stackrel{ riangle}{=}$
((3)
`	
(ر
	Se
	20
	smose
_	~

Osmose O-Calc Pole Loading Analysis Report	lc " Pole L	oading	g Ana	alysis	Rep	ort								7	Licensed To:	:0
Group ID:	TMO SO CAL	Pole Leng	Pole Length / Class:			45 / 1	Code:				GO 95	Structure Type:	pe:		DEADEND	
	66513-15 IE05372C P# 10266PBM	Pole Species	ies:		DOUGLAS FIR	S FIR	NESC Rule:	Rule:			1	Status:		At	At Installation	
Related To	PARENT	Setting Depth (ft):	epth (ft):			00.9	Constr	Construction Grade:	ade:		Y	Strength Factor:	tor:		0.25	
Region:	Los Angeles	Groundlin	Groundline Circumference:	ference:		43.00	Loadin	Loading District:			Light	Transverse Wind LF:	Wind LF:		1.00	
District:	PASADENA Power	Groundlin	ne Fiber St	Groundline Fiber Stress (psi):		8,000	Ice Rac	dial Thick	Ice Radial Thickness (in):		0.00	Wire Tension LF:	n LF:		1.00	_
Line:	588 S. Grand Ave	Fiber Stre	ess Height	Fiber Stress Height Reduction:		S.	Wind	Speed Apl	Wind Speed Applied (mph):		55.90	Vertical Load LF:	d LF:		1.00	_
Owner:	JOINT	Allowabl	Allowable Moment at 0.0 ff:	at 0.0 ft:	,	41,957	Wind	Wind Pressure (pst)	pst):		8.00					
Equipment:	Owner	Attach				Rotate				Unit Unit	it Unit		0	Offset Wind	_	ent
•		Height	Offset		•	Angle	•	Ħ	_	idth Dian	Width Diameter Length	h Factor	Ϋ́	_		<u> </u>
A IN SIZ (S) IN THE GSG OBJUST IN I		(H)	(iii)	(ii)	(deg)	(deg)	(deg)		(ii)	(in) (in)	(iii)		9	*	\exists	<u>*</u>
4 IN SCHOOL FOR 30PT W/ (5) 1/6 IN CF		18.50	19.39	11.50	18.0	0.0	0.0			4.50	- 4.50			108 3,197		3 3
4 IN SCHOOL RSK 30FT W/ (5) 7/8 IN CA		18.50	18.39	10.50	0.0	0.0	0.0	208.0		6.50	- 4.50				3,197 3,201	
4 IN SCHOOL RSK 30FT W/ (6) 7/8 IN CA		18.50	19.39	05.11	0.81-	0.0	0.0			05.4	4.50		•	-100 3:1	5,197 3,0	
12 IN DIA A 20 IN LINCU BOLL	Communication	11.00	7.38	1.00	0.0	0.0	0.0	0.7	·		- 05.0)	× 0	× 0
18 CHANNEL STRUT 15/8 12 GA PS 520 Z COMMUNICATION	20.2 Communication	00.11	13.44	6.50	0.0	0.0	0.0	0.6		.63	. 18.00			0 0	m -	~ .
S SIN DIA A 20 IN TITLO DOLL	Communication	-00.1	7.03	0.00	0.0	0.06	0.0	7.0			0.50			0		_
18 CHANNEL STRUT 1 5/8 12 GA PS 520 2 Communication	20 2 Communication	1.00	13.59	00.9	0.0	0.0	0.0	4.0	1.63	1.63	- 18.00	1.6		0		0
Totals: 12Equipment								0.860,						13 18,723	723 18,736	36
Guy Wire Loads:	Owner	Type	Attach	End	Lead/Span		Wire	Lead	Incline	Attached	Wire	Wire	Offset	Wind	Moment	
,			Height	Height	Length		Dia.	Angle	Angle	To	Weight	Length	Moment	Moment	at GL	
			E	E			(in)	(deg)	(deg)		(lb/ft)	(£)	(lb-ft)*	(lp-ft)*	(lp-ft)*	
1) 10M STRAND (0.306)	Power	SPAN/HEAD	35.00	38.00	100.00			0.0	-1.7		0.165	100.04	0	357	357	
2) 10M EHS STRAND (.313 - 7 WIRE)	Power	DOWN	35.00	00.0	25.00		0.306	180.0	54.9	A-1	0.165	42.79	0	0	0	
Totals: 2 Guy Wires													0	357	357	
Guy Wire Tension:		Type	Attach	Elastic	c RTS	4		_		Required	Applied		-	Transverse	Moment	
Flexible Pole, Fixed at GL	TS		Height	Modul	Modulus Strength		Te	•	` 	Tension ²	Tension ²	Load ²	Load?	Load.	at GL ²	
1) 10M STRAND (0 306)		CDANIZEAD	(11)	(1831)	(al)		(ID)	(GI)	(ar)	(al)	(ID)	(a)	(ID)	(1)	.(11-QI)	T
2) 10M EHS STRAND (313 - 7 WIRE)			35.00					200	1 085	575	573	540	386	, v	178	
Totals: 2 Guy Wires			20.00					3	60.	1	1	538	8	. 0	-10	
Anchor/Rod Load Summary	marv.	and the same of th			and the second distribution of the second											
Anchor/Rod Id	Rod Tyne	Αn	Anchor Tyne	a	Peo		Ped I	Bod	Anchor	Coil	Required	d Required	Annlied	Required	Ţ	
	24 C = 200	į	dir como	.	1			1		ָבָּייִבָּייִבְּייִבְּייִבְּיִיבְייִבְּייִבְּיִיבְייִבְּיִיבְּייִבְּיִבְּ	,				. 7	
					Lengtn			Strength	Strength	Class	Strengtn	Ω	_	Capacity	· >-	
					(11)		(deg)	(QI)	(QI)		(QII)	(ar) ,	(qp)	%		٦
l) Power and	Joslyn Copperbonded 3/4in x 9ft Twineve	nded 3/4in			25.00		180.0	26,500	₹ Ž	Ϋ́ N	1,085	672	672	6.1%		
Totals: 1 Anchor	•															

Version: 3.5

Printed: Wed 21-Apr-2010 10:50 AM

June 28, 2011

Dan Rix
City Engineer
City of Pasadena
Department of Public Works
Engineering Division
100 North Garfield Avenue
Room 336
Pasadena, CA 91101

Dear Mr. Rix,

We would like to state our opposition to the proposed wireless telecommunications facility at Grand Avenue and California Boulevard. It is in a most inappropriate location.

We are hopeful the permit will be rescinded at the July 11th hearing.

Thank you for your consideration.

Linda Leiter

Linda & John Seiter

534 Palmetto Drive

Pasadena, CA 91105

626-792-8010

lasonpal@aol.com

Begin forwarded message:

From: yeomans527@earthlink.net
Date: June 24, 2011 1:25:45 PM PDT

To: drix@cityofpasadena.net

Subject: Fw: Proposed Wireless at Grand & California

Reply-To: yeomans527@earthlink.net

corrected address

----Forwarded Message-----

From: <u>yeomans527@earthlink.net</u> Sent: Jun 24, 2011 1:24 PM To: dri@cityofpasadena.net

Subject: Proposed Wireles at Grand & California

I support the wireless antenna and oppose the appeal. We need more wireless access in our beautiful Arroyo, which for wireless access is a ditch. I would like AT&T to be included on the antenna, as i-phones get terrible coverage in our neighborhood. I am frustrated by poor wireless signals about fives time every day. (phone, wireless radio, downloads, multiple apps). Backup emergency access is also valuable.

The plan is reasonable and unobtrusive. The lady who littered our lovely neighborhood with uninformed leaflets talking of "urban blight" cannot have seen the plan, as the overhead wires, ugly lighting and telephone pole are the ugly issue, not the antennas.

To attract successful neighbors, we need to improve our infrastructure, especially when it pays for the franchise to the city. Pasadena should remain competitive in the 21st Century, and help these companies provide crucial access.

Deny the appeal!

Bill Yeomans 527 California Terrace Pasadena 91105

Date 7(6 Hour 1©: 30 To	WHILE YOU WERE OUT	f 848 S. Grand	Phone Cell 626 (688-8972	Telephoned B Please call Called to see you Called Yearts to see you Peturned your call Called	Message Re: Proposed cell antequa	of it. "(Reception is horrible	of anything that can be done to fix it is five with me."	He said no one will Signed strosso even notice the pole	Marine Table 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DateTo	` ```	jo	Phon	Tel Ca Wa	Mess	म ह	# 4	于 stress	

uglier than the cable wires a the box out in front of his house.

From: Gretchen Brickson [mailto:jgbrickson@sbcglobal.net]

Sent: Friday, July 08, 2011 8:49 AM

To: Bogaard, Bill

Subject: Hearing Prepartation: Wireless Telecommunications Facility on Grand Avenue

Mayor Bogaard,

I am a West Pasadena resident and have appealed the installation of a wireless telecommunications facility and antenna planned for the corner of Grand Avenue and California Boulevard. There was not an opportunity for adequate public involvement in the decision. I am proposing that the antenna be installed atop a sturdy street light on California Boulevard, East of Grand and on, or West of, Orange Grove.

The appeal will be heard by the City Council during the Public Hearing this Monday, July 11th at 7:30 pm. The rationale for the appeal is included in a handout and issue paper that is attached as correspondence to the Pasadena City Council agenda and staff report (item #13) on-line.

The materials have also been provided to you in hard copy through the City Clerk's office. I hope you will read the handout and issue paper prior to the hearing.

If you or your staff would like to discuss the appeal with me today (Friday) or on Monday, I may be reached during the day at (818) 774-3274.

Thank you for all you do for the City of Pasadena.

Respectfully,

Gretchen Brickson

Rix, Dan

From:

J. Rupert Thompson <rupert@ionapictures.com>

Sent:

2011-07-08 10:13

To:

Rix, Dan

Subject:

Cell antenna 558 S. Grand

Dear Mr. Rix,

I am a resident that lives near this telephone pole and have a couple of questions:

It says on the notice that a resident had filed an appeal - is that AGAINST the installation of the antenna?

This is a t-mobile antenna but didn't they just get bought by ATT? In which case this antenna would improve service for ATT customers in the area?

Thank you.

J. Rupert Thompson Iona Pictures http://ionapictures.com

Jomsky, Mark

Subject:

FW: WPRA Supports Appeal of Permit for Telecommunication Antenna at Grand Ave and California Blvd

From: Bill Urban [mailto:bill.urban@gmail.com]

Sent: 2011-07-08 15:36

To: Madison, Steve; Suzuki, Takako; Beck, Michael; Pastucha, Martin; Rix, Dan; Michael Udell; jgbrickson@sbcglobal.net;

WPRA Board

Subject: WPRA Supports Appeal of Permit for Telecommunication Antenna at Grand Ave and California Blvd

Councilmember Madison.

The West Pasadena Residents' Association (WPRA) respectfully urges the City Council to consider three issues raised in Gretchen Brickson's appeal of staff decision approving a permit for a wireless telecommunication antenna at Grand Avenue and California Boulevard:

- 1. Require the Pasadena Department of Public Works to post accurate picture(s) of the proposed antenna installation on the City of Pasadena website for 30 days to allow public review and comment. The picture(s) should include current landscaping at the proposed site.
- Require the Pasadena Department of Public Works to post a report on the proposed installation on the City of Pasadena website. The report should succinctly substantiate the wireless coverage gap, the rationale for selecting the proposed location, any alternatives considered, a recommended method of camouflage, and proposed precautionary distance standards. As in the first item above, allow 30 days for public review and comment.
- 3. Require that telecommunication antennas be installed on City-owned poles or other structures. This will allow the City to provide continuing oversight and will direct licensing fees to the City rather than other entities.

In addition, we understand that the original permits were based on two major misconceptions:

- 1. The installation photo provided showed the antenna on a streetlight, rather than wooden pole.
- 2. The City understood that the antenna would be installed on a City-owned pole, which turns out to be mistaken.

Thank you.

Bill Urban Vice President West Pasadena Residents' Association

Distribution:

Steve Madison, District 6 Councilmember
Takako Suzuki, Field Representative for Council District 6
Michael Beck, City Manager
Martin Pastucha, Director of Public Works
Dan Rix, City Engineer, Public Works
Michael Udell, President, WPRA
Gretchen Brickson
WPRA Board Members

From: gabriel yeung [mailto:gumdoc8@yahoo.com]

Sent: Sunday, July 10, 2011 11:44 PM

To: Madison, Steve

Subject: T-Mobile antenna on California and Grand

Dear Mr. Madison,

I just wanted to register the fact that I'm very concerned that T-Mobile may be able to place 6 foot antenna/obstruction to an already existing eye-sore/telephone pole. I live at the NorthEast corner of Ca/Grand and my backyard, pool, bedroom, all look towards that telephone pole, which is already a visual eyesore and to add a 6 foot antenna to that seems even more of visual disturbance, not only for me, but also adjacent neighbors and all of us who walk our neighborhoods.

I've already sent 2 emails to Richard Yee, but to no avail. Please forward to all involved. I will try to make the city council meeting tomorrow at 7:30p City Hall Room 249.

Thanks,

Gabriel M. Yeung

Jomsky, Mark

Subject:

FW: Grand Ave/California proposed T-Mobile tower extension

-----Original Message-----

From: Taylor, James [mailto:jtaylor1947@gmail.com]

Sent: 2011-07-10 16:31

To: Rix, Dan

Subject: Grand Ave/California proposed T-Mobile tower extension

Dear Sir,

I live at 788 S Grand Ave, about two blocks from the proposed cell tower extension/addition. I strongly support immediate action on T-Mobile's request! I currently have ATT cell service and it is just horrible. As soon as that tower is operative, I will immediately switch to T-Mobile. This is what competition is all about.

Thank you.

James D. Taylor 788 S Grand Ave Pasadena, Ca 91105

909 607-3455 (w) 626 394-9723 (c)

	Avenue instead.		
	NAILE	ADDRESS	E-MAIL
1/9/11	Lourdes Blum	702 S. Grand Halrbloom	mhbloom@sbiglobolnt
	Juhui Li	690 S Grand Ave	17 Whii 416 @ gmail. com
	Haruko Eann	6925. Grand Ave.	KO@ Koeann.com
	Jimmy Jul	575 LA LOMA RI	LOCKDEANN. COM LEWTTOL LASTING OF
	CARRIEL TEMPH	558 S. GLAND	GUMDOCO CYAHOO UM
	Kaven Brandt	555 S. Grand	Kerreile lulubraint. com
1	Tulu Broudt	- A - AS	(5. @ well Brast com
and)	David Simbing	575 S. Grand Are	dlessim P Maccom
To top .	Denize Monaglan	615 W. California	a Bl. demona@Mac.com
	Roch Myes		Richard Hours Com
	Softer Erroll	649 S. GRMS	SALVATORS 1950 CONTETZER CON
	Chebra adriano	701 S. Grand Ove	rmikadrjano E Duglobal
	Dervon Seochly	210 S. Grand do.	
	Yorkhopk Loc	bar S. Mundave.	
	Donald Germi	620 S. Grand Ave	Persoden
<i><</i> "	Laura Peralfa	600 W. California Bld.	Pasadena, 9105 Lavra @ USPRODUCTIONS. COM
***	Trancox Rozall	610 S. Grand Dr.	LAUTE @ LPSPRODUCTIONS. COM
7/10/,	m L'Hattleson	610 W. Caley Bled	Pasodan Ca 91165
			MHUTCHELONGSKGLBALO
	110		NOT

Nerce	ADDRESS	E-MAIL
Heathur Scholtz	e e	St heathicschuldes
Hatherine H. Allen	666 W. California Bl	relationthy allen ach com
Whitelaw Reid Allery		Rei Digthy ALLENE Bel Cers
DIANE F CARROLL	618 W. California Blue	1. dianecarroll3@gmail.eon
Geoffrey Enton	696 v California	Tantacra ayahou ca
I'm Neuteld	696 W. California	Ineuteldannigu law.com
Jenniferhaugh a	100 W. California	jennifer faughlineocgard
Janelle Morton Christina Wallerstein	711 W Californa	hatboxikm@aol.com
Christina Wallerstein	1667 West California	cwallersteine dslextreme com
Antonin Rodriguez	627 W California 80.	THRON2160FZART@DOLCOM
JV 40 4 00	530 & GRAND A	
Dirginia I Holl	5305 Grand Ove	unolle speglobal
Charlie Kaufmen	615 W. Californiable	Seekhay Qaol. Com
Moire Loomis	6395. Grad Ave	rdloomis@smal.ca
JUSTIN DEAN	4705. WEARDAUK	JHIDAN CEARTICING AKET
KatieKelly	478 S. Grand Ave.	beekelly we harter, net
		/