FINAL Traffic Impact Study HWP Annex Project

City of Pasadena, California March 25, 2009

Prepared for:

City of Pasadena Department of Transportation
 221 East Walnut Street, Suite 210
 Pasadena, California 91101

LLG Ref. 1-08-3745-1

Prepared by:

Under the Supervision of:

Clare M. Look-Jaeger, P.E.
Principal

Linscott, Law \&
Greenspan, Engineers
236 N. Chester Ave., Suite 200
Pasadena, CA 91106

Table of Contents

SECTION Page
1.0 Introduction1
1.1 Study Area 1
2.0 Project Description.4
2.1 Existing Project Site 4
2.2 Project Description. 4
2.3 Location, Existing Uses, and Site Conditions 4
2.4 Proposed Uses and Improvements. 7
2.4.1 Environmental Education and Community Meeting Center 7
2.4.2 Equestrian Facilities 7
2.4.3 Natural Open Space 7
2.4.4 Park Offices, Maintenance Facilities, and Infrastructure 7
2.4.5 Passive Recreation Facilities 8
2.4.6 Los Angeles County Fire Camp 2 8
2.5 HWP Annex Parking 9
2.5.1 Existing Parking 9
2.5.2 Proposed Parking 9
2.5.3 Parking for Special Events Scenario. 11
3.0 Site Access and Circulation 13
3.1 OGA and HWP Access. 13
3.2 Project Site Access and Circulation. 14
3.3 Existing Area School Circulation 14
3.4 Bicycle Access 15
4.0 Existing Street System 16
4.1 Regional Highway System 16
4.2 Existing Local Street System 16
4.3 Roadway Classifications 18
4.4 Roadway Descriptions 18
4.5 Existing Public Bus Transit Service 20
5.0 Traffic Counts 23
5.1 Weekday Traffic Counts 23
5.2 Weekend Traffic Counts 23
6.0 Cumulative Projects 28
6.1 Related Projects. 28
6.2 Ambient Traffic Growth Factor. 31

Table of Contents (continued)

SECTION Page
7.0 Traffic Forecasting Methodology 36
7.1 Project Traffic Generation 36
7.1.1 Trip Generation Assumptions 37
7.1.2 Project Weekday Trip Generation 38
7.1.3 Project Weekend Trip Generation 38
7.1.4 Trip Generation Comparison 40
7.2 Project Trip Distribution and Assignment 40
7.2.1 Project Weekday Trip Assignment 42
7.2.2 Project Weekend Trip Assignment 42
8.0 Traffic Impact Analysis Methodology 46
8.1 Criteria and Thresholds 46
8.2 Traffic Impact Analysis Scenarios. 47
9.0 City of Pasadena Traffic Analysis 48
9.1 Existing Conditions 48
9.1.1 Existing Weekday Conditions 48
9.1.2 Existing Weekend Conditions 48
9.2 Existing With Ambient Growth Conditions 48
9.2.1 Existing With Ambient Growth Weekday Conditions 48
9.2.2 Existing With Ambient Growth Weekend Conditions 48
9.3 Future Pre-Project Conditions 53
9.3.1 Future Pre-Project Weekday Conditions 53
9.3.2 Future Pre-Project Weekend Conditions 53
9.4 Future With Project Conditions 53
9.4.1 Future With Project Weekday Conditions 53
9.4.2 Future With Project Weekend Conditions 53
10.0 Street Segment Analysis 60
10.1 Summary of Weekday Street Segment Analysis 61
10.2 Summary of Weekend Street Segment Analysis 61
11.0 Transportation Improvement Measures 64
11.1 Summary of Street Segment Improvement Measures 64
11.2 Transportation Demand Management 65
12.0 Congestion Management Program Traffic Impact Assessment 66
12.1 Intersections 66
12.2 Freeways 66
12.3 Transit Impact Review 67
13.0 Conclusions 68

Table of Contents (continued) List of Tables

SECTION-TABLE \# Page
4-1 Existing Transit Routes. 21
5-1 Existing Traffic Volumes 24
6-1 List of Related Projects. 29
6-2 Related Projects Weekday and Weekend Trip Generation 32
7-1 Project Trip Generation Summary - Weekday and Weekend Conditions 39
8-1 City of Pasadena Intersection Impact Threshold Criteria 46
9-1 Summary of Volume to Capacity Ratios and Level of Service- Weekday and Weekend Conditions 49
10-1 City of Pasadena Street Segment Impact Threshold Criteria. 60
10-2 Summary of Weekday Street Segment Analysis 62
10-3 Summary of Weekend Street Segment Analysis 63
APPENDICES
APPENDIX
A. HWP Annex Project Anticipated Usage Data
B. Manual Traffic Counts
C. Proposed Project Analysis Data:
ICU and Levels of Service Explanation
ICU Data Worksheets-Weekday AM and PM Peak Hours and Weekend Mid-Day Peak Hour
D. Automatic 24 -Hour Machine Traffic Counts

TABLE OF Contents (continued) LIST OF FIGURES

Section-Figure\# Page
1-1 Vicinity Map 2
2-1 Project Site Area 5
2-2 Parking Areas Within HWP and Annex 10
4-1 Existing Lane Configurations 17
4-2 Existing Public Transit Routes 22
5-1 Existing Traffic Volumes - Weekday AM Peak Hour 25
5-2 Existing Traffic Volumes - Weekday PM Peak Hour 26
5-3 Existing Traffic Volumes - Weekend Mid-Day Peak Hour 27
6-1 Location of Related Project 30
6-2 Related Projects Traffic Volumes - Weekday AM Peak Hour 33
6-3 Related Projects Traffic Volumes - Weekday PM Peak Hour 34
6-4 Related Projects Traffic Volumes - Weekend Mid-Day Peak Hour 35
7-1 Project Trip Distribution 41
7-2 Project Traffic Volumes - Weekday AM Peak Hour 43
7-3 Project Traffic Volumes - Weekday PM Peak Hour 44
7-4 Project Traffic Volumes - Weekend Mid-Day Peak Hour 45
9-1 Existing With Ambient Growth Traffic Volumes - Weekday AM Peak Hour 50
9-2 Existing With Ambient Growth Traffic Volumes - Weekday PM Peak Hour 51
9-3 Existing With Ambient Growth Traffic Volumès - Weekend Mid-Day Peak Hour 52
9-4 Future Pre-Project Traffic Volumes - Weekday AM Peak Hour 54
9-5 Future Pre-Project Traffic Volumes - Weekday PM Peak Hour. 55
9-6 Future Pre-Project Traffic Volumes - Weekend Mid-Day Peak Hour 56
9-7 Future With Project Traffic Volumes - Weekday AM Peak Hour 57
9-8 Future With Project Traffic Volumes - Weekday PM Peak Hour 58
9-9 Future With Project Traffic Volumes - Weekend Mid-Day Peak Hour 59

Traffic Impact Study

HWP Annex Project

City of Pasadena, California March 25, 2009

1.0 INTRODUCTION

This traffic analysis has been prepared to identify and evaluate the potential traffic impacts of the proposed Hahamonga Watershed Park (HWP) Annex project. The proposed project is located in the Upper Arroyo Seco area adjacent to the Hahamongna Watershed Park in the City of Pasadena, California. The proposed HWP Annex project is located within the 30 -acre property adjacent to the northwest portion of the Hahamongna Watershed Park. The project site is located in an area of existing recreational, park and open space uses and is generally bounded by the Jet Propulsion Laboratory to the north, Hahamongna Watershed Park to the south and east, and Oak Grove Drive to the west. The proposed HWP Annex project site location and general vicinity are shown in Figure 1-1.

The traffic analysis follows City of Pasadena traffic study guidelines ${ }^{1}$ and is consistent with traffic impact assessment guidelines set forth in the Los Angeles County Congestion Management Program ${ }^{2}$. This traffic analysis evaluates potential project-related impacts at nine key intersections and two key street segments in the vicinity of the project site. The study intersections and street segments were determined in consultation with City of Pasadena Department of Transportation staff. The Intersection Capacity Utilization method was used to determine Volume-to-Capacity ratios and corresponding Levels of Service at the study intersections. A review also was conducted of Los Angeles County Metropolitan Transportation Authority freeway and intersection monitoring stations to determine if a Congestion Management Program transportation impact assessment analysis is required for the proposed project.

This study (i) presents existing traffic volumes, (ii) forecasts future traffic volumes with the related projects and the growth in ambient traffic, (iii) forecasts future traffic volumes with the proposed project, (iv) determines project-related impacts, and (v) recommends mitigation measures, where necessary.

1.1 Study Area

Based on direction from City of Pasadena staff, a total of 11 locations, including nine study intersections and two street segments, have been identified for evaluation. These study locations provide local access to the study area and define the extent of the boundaries for this traffic impact investigation. Further discussion of the existing street system and study area is provided in Section 4.0 herein.

[^0]

The general location of the project in relation to the study locations and surrounding street system is presented in Figure 1-1. The traffic analysis study area is generally comprised of those locations which have the greatest potential to experience significant traffic impacts due to the proposed project as defined by the Lead Agency. In the traffic engineering practice, the study area generally includes those intersections that are:
a. Immediately adjacent or in close proximity to the project site;
b. In the vicinity of the project site that are documented to have current or projected future adverse operational issues; and
c. In the vicinity of the project site that are forecast to experience a relatively greater percentage of project-related vehicular turning movements (e.g., at freeway ramp intersections).

The locations selected for analysis were based on the above criteria, proposed HWP Annex project peak hour vehicle trip generation, the anticipated distribution of project vehicular trips and existing intersection/corridor operations.

2.0 Project Description

2.1 Existing Project Site

The proposed project is located in the Upper Arroyo Seco area adjacent to the Hahamongna Watershed Park (HWP) in the City of Pasadena, Califormia. The 30 -acre project site is situated in an area of existing recreational, park and open space uses and is generally bounded by the Jet Propulsion Laboratory (JPL) to the north, HWP to the south and east, and Oak Grove Drive to the west. The Annex property currently includes equestrian facilities, oak woodlands, the Los Angeles County Fire Camp 2 and a number of vacant buildings that were previously leased to the United States (US) Forest Service. The existing buildings on the site will be renovated to accommodate the proposed project. The proposed project will accommodate the same equestrian uses and establish a vision for their future.

2.2 Project Description

The proposed HWP Annex project consists of an Amendment to the Hahamongna Watershed Park Master Plan (the Upper Arroyo portion of the Arroyo Seco Master Plan) to annex 30 acres of land into the park. If adopted, the amended Master Plan would designate the annex area for an environmental education/community meeting center, the only City-owned equestrian facility, natural open space, passive recreational facilities, and ancillary infrastructure and maintenance facilities, while maintaining the existing Los Angeles Fire Camp 2, which occupies six acres of the site.

The HWP Annex project is planned to be completed and occupied in year 2014. The proposed HWP Annex project site area is illustrated in Figure 2-1. Further discussion of the project land use components and expected programming is provided in the following subsections.

Vehicular access to the Oak Grove area (OGA) and portions of Hahamongna Watershed Park is provided via the Oak Grove Drive/Foothill Boulevard intersection and an existing limited use oneway inbound driveway along the east side of Oak Grove Drive, immediately north of the Oak Grove Drive/Berkshire Place intersection. Vehicular access to the Annex site will be provided via the Oak Grove Drive/Foothill Boulevard intersection. Vehicular circulation throughout HWP, the OGA and the Annex site, are provided via internal roadways and driveways. Further discussion of the proposed project site access and circulation scheme is provided in Section 3.0.

2.3 Location, Existing Uses, and Site Conditions

The area proposed for annexation is located immediately northwest of the existing HWP, along the east side of Oak Grove Drive, approximately 500 feet north of Foothill Boulevard. The site is surrounded by the Jet Propulsion Laboratory (JPL) to the north, the Oak Grove area to the south, La Cañada High School across Oak Grove Drive to the west, and the Devils Gate Reservoir to the east. The 30 -acre site is roughly " L " shaped and consists of the facilities and uses listed below:

1. The abandoned US Forest Service Oak Grove Station comprises approximately seven acres in the west portion of the site. This abandoned facility includes:

- barracks (three single-story structures);
- a mess hall;
- an administration building;
- a permanent residence;
- a storage yard area;
- pre-fabricated metal buildings; and
- a pre-fabricated metal nursery building and plant nursery growing beds.

2. The equestrian uses comprise approximately 12 acres in the east portion of the site. These three equestrian tenants are - Rose Bowl Riders, MACH1, and Tom Sawyer Camps - and include:

- equestrian performance/practice areas: main arena, a smaller oval arena, a jumping area, and two pens;
- various horse boarding facilities, including barns, horse stalls, corrals, a tack room, and a wash rack;
- a clubhouse; and
- Youth camp staging facilities: a mobile home unit, parking area, storage area and additional horse corrals.

3. An oak woodland comprises three acres in the southwest comer of the site.
4. A common area along the site's western boundary includes a park access road, oak woodlands and a public trail.
5. A common area along the site's eastern boundary consists of an arroyo stone stock pile, an equestrian waste management area and vegetation.
6. The Los Angeles County Fire Camp 2 comprises six acres in the northwest portion of the site. No improvements or modifications are proposed for this facility, which would remain as a countywide training, conference, and foothill fire response facility.

2.4 Proposed Uses and Improvements

The HWP Annex project site is proposed for six main uses: (1) an environmental education and community meeting center, (2) a public equestrian and horse boarding facility, (3) natural open space, (4) park offices, exhibition space, and maintenance facilities, (5) passive recreational facilities, and (6) the Los Angeles County Fire Camp 2 (to remain as existing). These proposed uses are summarized in the following subsections. A summary of the anticipated visitor arrival and departure patterns during typical weekdays and weekend days based on the proposed land uses and programming information provided by City of Pasadena Parks \& Natural Resources Division staff is provided in Appendix Tables $A-1$ and $A-2$.

2.4.1 Environmental Education and Community Meeting Center

The proposed environmental education and community meeting center would adaptively reuse the majority of the abandoned US Forest Service facility. The proposed center would comprise 5.63 acres and would include conference space, office space, an exhibit space, indoor classrooms, outdoor classrooms/gathering areas, a dining hall, and a xeriscape demonstration garden.

2.4.2 Equestrian Facilities

The proposed Master Plan includes renovation of and improvement to the site's existing equestrian facilities for use by the public and for lease to rider groups. The proposed Master Plan includes equestrian facilities which include improved equestrian performance/practice areas, various horse boarding facilities, a remodeled and expanded main clubhouse, a relocated foreman residence, horse trailer parking/staging, and various ancillary facilities.

2.4.3 Natural Open Space

The Annex site includes natural open space which is located along the site's southern and eastern boundaries. These natural open spaces include an oak woodland, a meadow, and a sycamore woodland. The proposed Master Plan designates these areas to be maintained and restored, along with removal of the fence along the site's southern border.

2.4.4 Park Offices, Maintenance Facilities, and Infrastructure

The proposed Master Plan designates a variety of existing structures on the Annex site for park office space and maintenance facilities. In accordance with the proposed Master Plan, the existing U.S. Forest Service residence would be used as a Park Ranger's office, the existing pre-fabricated metal sheds would be used for maintenance/storage and a community volunteer work center, and the pre-fabricated metal nursery would be used as a plant lab and growing beds.

Infrastructure improvements included in the proposed Master Plan include a variety of access and parking improvements. The site's proposed main entry would take access from Oak Grove Drive with vehicle circulation extending through the proposed education and community meeting center and to several points in the equestrian area. Parking would be provided in five separate lots on the Annex site, all of which are in the vicinity of the education and community meeting center. Additional parking is also available in the adjacent OGA portion of the HWP. See Section 2.5 for additional details.

The City is also considering extending the site's main access road along the north side of the education center and equestrian area to an existing City parking lot that is currently leased to JPL for their weekday parking needs. If undertaken, the proposed main access extension would provide additional parking spaces for park patrons during the weekends. Access to the JPL lot would be restricted during weekdays.

2.4.5 Passive Recreational Facilities

The proposed Master Plan includes a variety of multi-use trails and several picnic/gathering areas. An all weather bicycle route would traverse the site, following the proposed main access road alignment from the site's southwest comer to the site's northeast corner. A separated equestrian trail would also follow this alignment. An additional trail would be located along the site's eastern boundary and would connect to trails northeast and south of the site at either end. Finally, the proposed Master Plan includes various other internal connection trails.

In addition to trail improvements, the proposed Master Plan includes a group picnic area near the proposed education center, a group gathering area with picnic tables in the southeast corner of the site, and a gathering/yard area in the south-central portion of the site.

2.4.6 Los Angeles County Fire Camp 2

The Los Angeles County Fire Camp 2 comprises six acres in the northwest portion of the site. No improvements or modifications are proposed for this facility, which would remain as a countywide training, conference, and community outreach facility.

2.5 HWP Annex Parking

2.5.1 Existing Parking

Parking within the Annex property is provided in several surface parking lots located throughout the site. The parking areas provided within both the HWP and proposed Annex sites are shown in Figure 2-2.

As shown in Figure 2-2, a total supply of 127 parking spaces is currently provided at the Annex site. It should be noted that a majority of these existing parking spaces are located within the gated area previously occupied by the US Forest Service and is not accessible for use by the existing Annex activities and programs. Further, general observations conducted at the site indicate that portions of the available parking areas (i.e., those parking areas provided outside of the gated areas) are currently under-utilized during typical weekdays and weekend days. Based on information provided by City of Pasadena Parks \& Natural Resources Division staff, it is estimated that the existing Annex facilities and programs (e.g., equestrian facilities, youth camp and therapeutic riding programs, etc.) generate a peak parking demand of approximately 25 spaces during typical weekdays and weekend days.

2.5.2 Proposed Parking

A total supply of 175 spaces is planned to be provided within the Annex site as part of the project. This total supply does not include the City-owned parking lot with 214 spaces located north of the Annex site that is currently leased to JPL, nor the existing or proposed parking within HWP. The increase in parking demand associated with the proposed project on typical weekdays and weekend days was based on the project's land use components, anticipated visitor arrival and departure information shown in Appendix Tables $\boldsymbol{A}-1$ and $A-2$, and expected programming that will be provided at the Annex site. As shown in Appendix Table $A-1$, the weekday peak parking demand for the project is anticipated to occur at 3:00 PM with a demand of 107 spaces (i.e., 70 spaces for the conference attendees, 10 spaces for visitors, nine spaces for the community volunteer center, nine spaces for the equestrian boarding facilities, five spaces for the other equestrian facilities such as the public event area, and four spaces for the therapeutic riding program). As shown in Appendix Table $A-2$, the weekend peak parking demand for the project is anticipated to occur at 9:00 AM with a demand of 115 spaces (i.e., 70 spaces for the conference attendees, 20 spaces for visitors, nine spaces for the community volunteer center, eight spaces for the equestrian boarding facilities, five spaces for other equestrian facilities, and three spaces for the therapeutic riding program).

The total parking demand at the Annex site was determined based on the sum of the existing parking demand and the forecast increase in parking demand associated with the proposed project. Thus, a total weekday parking demand of 132 spaces (i.e., existing parking demand of 25 spaces plus an increased parking demand of 107 spaces with the project) and weekend parking demand of 140 spaces (i.e., existing parking demand of 25 spaces plus an increased parking demand of 115 spaces with the project), respectively, is forecast for the Annex site. Based on a comparison of the proposed parking supply (i.e., 175 spaces) and the forecast total parking demand (i.e., weekday peak demand of 132 spaces and weekend peak demand of 140 spaces), it is concluded that the proposed parking supply within the Annex site (i.e., 175 spaces) will accommodate the peak parking demand during typical weekdays and weekend days.

2.5.3 Parking for Special Events Scenario

Special events at the Annex site currently occur throughout the year on both weekdays and weekends. It is envisioned that special events will continue to be provided at the Annex site as part of the project, and that some of the project's land use components may be used concurrently or have events that may overlap. A summary of a special events scenario at the Annex is provided in Appendix Table A-3. It should be noted that this table reflects the arrival and departure patterns for all of the land uses (i.e., existing and proposed) that are anticipated to generate parking demand at the Annex site during a peak condition (i.e., June). The total parking demand at the Annex site for a special event scenario in which the site's land uses may be used concurrently or events may overlap was based on information provided by the City of Pasadena Parks and Natural Resources Division, the anticipated visitor arrival and departure information shown in Appendix Table $A-3$, the project's land use components and expected programming that will be provided at the Annex site. As shown in Appendix Table $A-3$, the peak parking demand at the Annex for a special events scenario is anticipated to occur at 9:00 AM with a peak demand of 237 spaces (i.e., 87 spaces for the conference attendees, 20 spaces for visitors, nine spaces for the growing beds/plant beds, nine spaces for the community volunteer center 14 spaces for the equestrian boarding facilities, 80 spaces for the other equestrian facilities such as the public event area, 12 spaces for the youth camp, and six spaces for the therapeutic riding program). Given the proposed parking supply (i.e., 175 spaces), it is concluded that the proposed parking supply within the Annex site is not sufficient to accommodate the forecast total parking demand at the Annex site for a special events scenario (i.e., peak demand of 237 spaces).

As the forecast total parking demand for a special events scenario exceeds the proposed parking supply of 175 spaces within the Annex site, other parking areas (e.g., the adjacent City-owned parking lot leased to JPL, parking provided within HWP [if available], etc.) will need to be utilized to accommodate the additional parking demand. It is recommended that the City of Pasadena Parks and Natural Resources Division monitor special events and programs at the Annex site through the permitting process. It is envisioned that permits would be issued such that the anticipated parking demand generated by any event or simultaneous activities held at the Annex facilities would not exceed the proposed parking supply unless sufficient off-site parking is identified and secured (e.g., JPL leased parking lot, parking within HWP [if available], other parking lots within City of Pasadena, etc.).

3.0 Site Access and Circulation

The site access scheme for the HWP Annex project is displayed in Figure 2-1. Descriptions of the proposed project site access and circulation schemes are provided in the following subsections.

3.1 OGA and HWP Access

Vehicular access to the Oak Grove area and portions of Hahamongna Watershed Park is provided via the Oak Grove Drive/Foothill Boulevard intersection and an existing one-way inbound driveway along the east side of Oak Grove Drive, immediately north of the Oak Grove Drive/Berkshire Place intersection. No changes to the existing OGA and HWP access points are anticipated to occur as part of the proposed HWP Annex project. Descriptions of the OGA and HWP access points are provided in the following paragraphs.

- Oak Grove Drive/Foothill Boulevard Driveway:

The northerly access driveway forms the east leg of the Oak Grove Drive/Foothill Boulevard intersection, which is currently controlled by a traffic signal. This driveway will remain in the same location. This driveway provides primary access to the internal roadways within the Hahamongna Watershed Park Annex area. Vehicles destined to the Annex site will utilize this driveway only to access the site. The northerly driveway will continue to accommodate full access (i.e., left-turn and right-turn ingress and egress turning movements).

- Oak Grove Drive Driveway:

The southerly access driveway is located along the east side of Oak Grove Drive, immediately north of the Oak Grove Drive/Berkshire Place intersection. It should be noted that this driveway is utilized for inbound pick-up and drop-off operations for the adjacent schools (e.g., La Canada High School) only. The driveway currently is open for a limited number of hours, primarily during the adjacent school pick-up and drop-off periods. The limited operations and use of the driveway are anticipated to continue as part of the HWP Annex project. Further discussion of the existing area school circulation is provided in the following subsections.

The above two driveways are connected by a frontage road located within the park property that parallels Oak Grove Drive. Primary vehicular access to the OGA and HWP is provided via another north-south intemal roadway that extends from the existing stop-sign controlled intersection with the parallel frontage road. It should be noted that when the southerly driveway is in operation, this intersection accommodates the one-way student pick-up and drop-off circulation in addition to the OGA and HWP park users.

3.2 Project Site Access and Circulation

Vehicular access to the Annex site is provided via the primary north-south internal roadway that extends north from HWP. Access within the Annex site will be provided via existing internal roadways and drive aisles that surround the existing buildings and facilities, as well as the proposed parking areas. The permeable access roadways are planned to provide primary access to the main buildings and parking areas within the Annex. Unpaved secondary access roadways within the Annex site extend from the internal primary access roadways and provide access to uses along the eastern portion of the Annex (e.g., equestrian boarding areas, youth and adult camp, etc.). Existing public bus transit service is discussed in Section 4.5 of this report.

3.3 Existing Area School Circulation

Several public and private schools (i.e., La Canada High School, Crestview Preparatory Elementary School, Saint Francis High School, Saint Bede the Venerable Elementary School, Flintridge Preparatory High School) are located in the study area. La Canada High School is located at the southwest comer of the Oak Grove Drive/Foothill Drive intersection. Access to the La Canada High School campus is accommodated via driveways on Foothill Boulevard and on Oak Grove Drive west of the project site. The formal student drop-off and pick-up occurs in the La Canada High School parking lot along the west side of Oak Grove Drive and informal student drop-off and pick-up occurs within the OGA along the frontage road that parallels Oak Grove Drive, which is accessible from the Oak Grove Drive driveway situated north of Berkshire Place. Crestview Preparatory Elementary School and Saint Francis High School are located along the south side of Foothill Boulevard, west of Oak Grove Drive. Access to Crestview Preparatory Elementary School and Saint Francis High School is accommodated via driveways on Foothill Boulevard west of the project site. Saint Bede the Venerable Elementary School and Flintridge Preparatory High School are located along the north side of Foothill Boulevard near the Foothill Freeway. Access to Saint Bede the Venerable Elementary School and Flintridge Preparatory High School is accommodated via driveways on Crown Avenue.

It should be noted that over the past several years the City of La Canada Flintridge and the City of Pasadena staffs have worked together to review the traffic issues associated with congestion due to student arrival/dismissal and JPL traffic along Oak Grove Drive between Berkshire Place and Foothill Boulevard. The coordination effort, review and recommendations associated with the OGA temporary south access were documented in a green sheet item memorandum prepared by the City of Pasadena Public Works and Transportation Department dated July 2002. Measures were identified to address school-related traffic congestion and potential traffic safety issues along Oak Grove Drive and along the park access road. The measures included roadway widening along the west side of Oak Grove Drive, reconfiguration of the internal parking layout and the design of an onsite pick-up and drop-off area in the La Canada High School parking lot, installation of a traffic signal at the Oak Grove Drive/La Canada High School north driveway, and providing a temporary driveway at the south end of the OGA to facilitate student pick-up and drop-off operations along the frontage road within the park. All of these recommended measures have been constructed and are currently in operation. The student drop-off and pick-up operations occur in a one-way
counterclockwise circulation pattern along the frontage road within the OGA, with vehicles entering via the Oak Grove Drive driveway situated north of Berkshire Place and exiting via the previously described Oak Grove Drive/Foothill Boulevard intersection. A crosswalk across the OGA frontage road is provided north of the internal intersection that provides access to the park. Students that are dropped-off or picked-up within the OGA are directed to utilize the existing pedestrian gate and signalized crosswalk across Oak Grove Drive to reach the La Canada High School campus.

It is recommended that the City of Pasadena continue to coordinate with City of La Canada Flintridge staff to discuss additional measures to alleviate traffic congestion and minimize vehicular queuing along this portion of Oak Grove Drive, as well as to further enhance safety. This may include further review of the student pick-up and drop-off circulation within the OGA, limited utilization of the southerly Oak Grove Drive driveway, relocation of the pedestrian crosswalk across the internal frontage road so as to minimize conflicts between park users and school-related vehicles at the internal intersection, etc.

3.4 Bicycle Access

Bicycle access within the project study area is facilitated by the City of Pasadena bicycle roadway network. A total of five bicycle routes (i.e., Class II Bike Lanes, Class III Bike Routes or Enhanced Class III Bike Routes) in the City's bicycle network are located within an approximate one-mile radius from the study area. The following key bicycle routes are located near the HWP Annex project study area:

- North-South Routes
- Oak Grove Drive: Class II Bike Lane
- North Arroyo Boulevard: Class II Bike Lane
- Linda Vista Avenue: Class III Bike Route (Enhanced)
- Casitas Avenue: Class III Bike Route
- East-West Routes
- Howard Street: Class III Bike Route

In addition to the above bicycle routes, bicycle access is provided through the Oak Grove area and Hahamongna Watershed Park along the main north-south internal roadway. Class II bikeways are lanes on the outside edge of roadways reserved for the exclusive use of bicycles and are designated with special signing and pavement markings. Class III bikeways are roadways recommended for bicycle use and are designated with signs posted along roadways. Enhanced Class III bikeways include 4-inch white edge lines and "Share the Road" signage.

4.0 Existing Street System

4.1 Regional Highway System

Primary regional access is provided by 1-210 (Foothill) Freeway via Foothill Boulevard and Berkshire Place. Additional regional access is provided to and from I-210 Freeway via existing ramps at Arroyo Boulevard-Windsor Avenue and Lincoln Boulevard. A brief description of the I210 Freeway is provided in the following paragraph.

I-210 (Foothill) Freeway is an east-west freeway connecting Pasadena with the San Fernando Valley to the west and the municipalities of the San Gabriel Valley to the east. In the project vicinity, four mixed-flow travel lanes are provided in each direction on I-210 Freeway. Interchanges with Foothill Boulevard, Berkshire Place, Arroyo Boulevard-Windsor Avenue and Lincoln Boulevard are located in the project vicinity.

4.2 Existing Local Street System

Immediate access to the project site is provided via Foothill Boulevard and Oak Grove Drive. The following nine study intersections were selected for analysis by PasDOT staff in order to determine potential impacts related to the proposed project:

1. Gould Avenue/Foothill Boulevard.
2. Crown Avenue-I-210 Freeway Northbound (NB) Off-Ramp/Foothill Boulevard.
3. I-210 Freeway Southbound (SB) Ramps/Berkshire Place.
4. I-210 Freeway NB Ramps/Berkshire Place.
5. Oak Grove Drive/Foothill Boulevard.
6. Oak Grove Drive/Berkshire Place.
7. Linda Vista Avenue/Oak Grove Drive.
8. Highland Drive-Linda Vista Avenue/Highland Drive.
9. Windsor Avenue/Oak Grove Drive-Woodbury Road.

A total of five of the study intersections are presently controlled by traffic signals, while the remaining four study intersections (Study Intersection Nos. 3, 4, 7 and 8) are currently stop sign controlled with the stop signs facing the minor street approaches. The existing lane configurations at the nine study intersections are displayed in Figure 4-1.

4.3 Roadway Classifications

The City of Pasadena utilizes the roadway categories recognized by regional, state and federal transportation agencies. There are four categories in the roadway hierarchy, ranging from freeways with the highest capacity to two-lane undivided roadways with the lowest capacity. The roadway categories are summarized as follows:

- Freeways are limited-access and high speed travel ways included in the state and federal highway systems. Their purpose is to carry regional through-traffic. Access is provided by interchanges with typical spacing of one mile or greater. No local access is provided to adjacent land uses.
- Arterial roadways are major streets that primarily serve through-traffic and provide access to abutting properties as a secondary function. Arterials are generally designed with two to six travel lanes and their major intersections are signalized. This roadway type is divided into two categories: principal and minor arterials. Principal arterials are typically four-or-more lane roadways and serve both local and regional through-traffic. Minor arterials are typically two-tofour lane streets that service local and commute traffic.
- Collector roadways are streets that provide access and traffic circulation within residential and non-residential (e.g., commercial and industrial) areas. Collector roadways connect local streets to arterials and are typically designed with two through travel lanes (i.e., one through travel lane in each direction) that may accommodate on-street parking. They may also provide access to abutting properties.
- Local roadways distribute traffic within a neighborhood, or similar adjacent neighborhoods, and are not intended for use as a through-street or a link between higher capacity facilities such as collector or arterial roadways. Local streets are fronted by residential uses and do not typically serve commercial uses.

4.4 Roadway Descriptions

A brief description of the important roadways in the project site vicinity is provided in the following paragraphs.

Arroyo Boulevard is a north-south roadway that is located southeast of the project site. Arroyo Boulevard is classified as a Collector roadway south of I-210 Freeway in the City's General Plan Mobility Element (November 2004). North of Woodbury Road, Arroyo Boulevard becomes Windsor Avenue. Two through travel lanes are provided in each direction in the project vicinity. Exclusive left-turn lanes in both the northbound and southbound directions and a separate right-turn lane in the northbound direction are provided at the intersection with Oak Grove Drive-Woodbury Road. Parking is generally provided along both sides of Arroyo Boulevard in the project study area. Arroyo Boulevard is posted for a speed limit of 35 miles per hour near the project site.

Oak Grove Drive is a north-south oriented roadway that is located immediately west of the project site. Oak Grove Drive extends south from La Canada-Flintridge (north of JPL) to the Windsor Avenue-Arroyo Boulevard/Woodbury Road intersection. Oak Grove Drive provides access to and from the Upper Arroyo Seco area at Foothill Boulevard via the entrance to the OGA and HWP. Oak Grove Drive is classified as a Principal Arterial between the westerly City limits and Berkshire Place in the City's General Plan Mobility Element (November 2004). Between La Canada-Flintridge and Berkshire Place, Oak Grove Drive is classified as a Minor Arterial in the City's General Plan Mobility Element (November 2004). Two through travel lanes are provided in each direction in the project vicinity. Parking is generally prohibited along both sides of Oak Grove Drive in the project vicinity. A Class II Bike Lane is provided in each direction between Berkshire Place and Arroyo Boulevard. Oak Grove Drive is posted for a speed limit of 35 miles per hour in the project vicinity.

Linda Vista Avenue is a north-south oriented roadway that is located south of the project site. Linda Vista Avenue is classified as a Minor Arterial from the northerly City limits to south of SR-134 Freeway in the City's General Plan Mobility Element (November 2004). One through travel lane is provided in each direction in the project vicinity. Parking is generally allowed along both sides of the roadway in the project study area. A Class III Bike Route is provided in each direction on Linda Vista Avenue between the I-210 Freeway and SR-134 Freeway.

Crown Avenue is a north-south oriented roadway that is located west of the project site. One through lane is generally provided in each direction on Crown Avenue in the project vicinity. Curbside parking is prohibited along both sides of Crown Avenue near the intersection with Foothill Boulevard. The posted speed limit on Crown Avenue is 30 miles per hour in the project vicinity.

Gould Avenue is a north-south oriented roadway that is located west of the project site. One through travel lane is provided in each direction in the project study area. Curbside parking is permitted along both sides of Gould Avenue north of Foothill Boulevard, however, south of Foothill Boulevard parking is generally prohibited along both sides of the roadway. Gould Avenue is posted for a speed limit of 25 miles per hour in the project vicinity.

Foothill Boulevard is an east-west oriented roadway that is located immediately west of the project site. Foothill Boulevard provides access to and from the Upper Arroyo Seco area at Oak Grove Drive at the entrance to the OGA and HWP. Two through lanes are generally provided in each direction west of the I-210 Freeway ramps in the project vicinity. Exclusive left-turn lanes are provided on Foothill Boulevard at the intersections with Gould Avenue and Crown Avenue. A separate right-turn lane is provided in the westbound direction at the Gould Avenue intersection and in the eastbound direction at the Oak Grove Drive intersection. In the project study area, parking is generally prohibited along both sides of the roadway. However, some curbside parking is permitted along the south side of Foothill Boulevard between Gould Avenue and the I-210 Freeway ramps as well as along the north side of Foothill Boulevard east of Crown Avenue. Foothill Boulevard is posted for a speed limit of 30 miles per hour in the project study area.

Berkshire Place is an east-west roadway that is located southwest of the project site. One through travel lane is provided in each direction west of the I-210 Freeway ramps and two through travel lanes are provided in each direction east of the I-210 Freeway ramps to Oak Grove Drive. Exclusive left turn lanes are provided in the eastbound direction at the intersections with the I-210 Freeway northbound ramps and Oak Grove Drive, as well as in the westbound direction at the intersection with I-210 Freeway southbound ramps. Parking is generally prohibited along both sides of the roadway in the project study area. There is no posted speed limit on Berkshire Place in the project vicinity, thus it is assumed to be a prima facie speed limit of 25 miles per hour.

Woodbury Road is an east-west roadway that is located south of the project site. Two through travel lanes are provided in each direction in the project study area. Exclusive left-turn lanes are provided in both directions at the Windsor Avenue-Arroyo Boulevard intersection. Parking is generally allowed along both sides of Woodbury Road in the project study area. Woodbury Road is posted for a 35 miles per hour in the project vicinity.

4.5 Existing Public Bus Transit Service

Public bus transit service within the HWP Annex project study area is currently provided by the Los Angeles County Metropolitan Transportation Authority (Metro), Foothill Transit Service, City of Glendale Beeline, and Pasadena Area Rapid Transit Service (ARTS). A summary of the existing transit service, including the transit route, destinations and peak hour headways is presented in Table 4-1. The existing public transit routes in the HWP Annex project site vicinity are illustrated in Figure 4-2.

Table 4-1
EXISTING TRANSIT ROUTES [1]

ROUTE	DESTINATIONS	ROADWAY'S NEAR SITE	NO. OF BUSESDURING PEAK HOUR		
			DIR	AM	PM
Mctro 177	Jet Propulsion Laboratory, California Institute of Technology, Pasadena City College. Hastings Ranch Center	Oak Grove Drive, Berkshire Place	$\begin{aligned} & E B \\ & W B \end{aligned}$	2	2
Metro 260	Artesia, North Long Beach, City of Commerce, San Marino, South Pasadena, Altadena	Fair Oaks Avenuc, Woodbury Road	$\begin{aligned} & N B \\ & S B \end{aligned}$	3	2 2
Metro 267	El Monte Station, Santa Anita Park, Westfield Shoppingtown Santa Anita, Paseo Colorado, Altadena	Lincoln Avenue, Woodbury Road	$\begin{aligned} & \text { NB } \\ & \text { SB } \end{aligned}$	2	2 2
Melro 268	El Monte Airport, Santa Anita Park, Westfield Shoppingtown Santa Anita, Sierra Madre, Jet Propulsion Laboratory	Fair Oaks Avenue, Woodbury Road. Lincoln Avenue	$\begin{aligned} & N B \\ & S B \end{aligned}$	2	$\begin{aligned} & 2 \\ & 2 \end{aligned}$
GB 3/La Canada Flintridge Shutte [2]	Iet Propulsion Laboratory, Glendale Community College, Glendale Galleria	Oak Grove Drive, Foothill Boulevard	$\begin{gathered} \text { NB } \\ S B \end{gathered}$	5 5	5 5
ARTS 20 [3]	Old Pasadena, Paseo Colorado. Playhouse District, California Institute of Technology, Huntington Memorial Hospital. Art Center College of Design	Fair Oaks Avenue. Woodbury Road	$\begin{aligned} & C W \\ & C C W \end{aligned}$		2
ARTS 31/32 [3]	North Lake Business District, Eaton Canyon Park, Eaton Canyon Golf Course, Sierra Madre Villa Gold Line Station	Lincoln Avenue, Woodbury Road, Fair Oaks Avenue	$\begin{aligned} & E B \\ & W B \end{aligned}$	3	3
ARTS S1/S2 [3]	Art Center College of Design. Brookside Golf Course, Rose Bowl, Old Pasadena, Huntington Memorial Hospital	Lincoln Avenue, Fair Oaks Avenue, Woodbury Road. Oak Grove Drive	$\begin{gathered} \mathrm{NB} \\ \mathrm{SB} \end{gathered}$	1	2

[1] Source: Los Angeles County Metropolitan Transportation Authority (Metro) website.
[2] Source: City of Glendale Public Works-Glendale Beeline website.
[3] Source: Pasadena Area Rapid Transit System (ARTS) website.
Note:
CW = Clockwisc
CCW $=$ Counter Clockwise

5.0 Traffic Counts

5.1 Weekday Traffic Counts

Manual traffic counts of vehicular turning movements were conducted at each of the study intersections during the weekday morning and afternoon commuter periods to determine the peak hour traffic volumes. ${ }^{3}$ Traffic volumes at the study intersections show the typical peak periods between 7:00 and 9:00 AM generally associated with the peak morning commuter hours, and 4:00 and 6:00 PM generally associated with the afternoon commuter hours. These time periods generally correlate with peak commuter hours in the Los Angeles Basin area, including the City of Pasadena. The existing weekday traffic volumes for the above referenced nine study intersections were increased at an annual rate of 1.5 percent (1.5%) per year to reflect year 2009 existing conditions.

The weekday AM and PM peak period manual counts of vehicle movements at the study intersections are summarized in Table 5-1. The existing traffic volumes at the study intersections during the weekday AM and PM peak hours are shown in Figures 5-1 and 5-2, respectively. Summary data worksheets of the manual traffic counts at the study intersections are contained in Appendix B.

5.2 Weekend Traffic Counts

Manual counts of vehicular turning movements were also conducted at the study intersections during a weekend day (i.e., Saturday) mid-day period to determine the weekend peak hour traffic volumes. The manual counts were conducted at the study intersections from 11:00 AM to 2:00 PM to determine the weekend mid-day peak hour. Similar to the approach taken for the weekday traffic count data, the existing weekend traffic volumes for the above referenced nine study intersections were increased at an annual rate of 1.5 percent (1.5\%) per year to reflect year 2009 existing conditions.

The weekend peak hour traffic volumes at the study intersections are also summarized in Table 5-l. The existing traffic volumes at the study intersections during the weekend mid-day peak hour are presented in Figure 5-3. Summary data worksheets of the weekend manual traffic counts at the study intersections are also contained in Appendix B.

[^1]Table 5-1
EXISTING TRAFFIC VOLUMES [1]

	INTERSECTION	DATE	DIR	AM PEAK HOUR		PM PEAK HOLIR		DATE	WEEKEND MID-DAY	
NO.				BEGAN	VOLUME	BEGAN	VOLUME		BEGAN	YOLUNIE
1	Gould Avenue/ Foothill Boulevard [2]	05/28/08	NB SB EB WB	7:30	$\begin{array}{r} 62 \\ 650 \\ 689 \\ 1.022 \end{array}$	5:00	$\begin{array}{r} 81 \\ 473 \\ 942 \\ 957 \\ \hline \end{array}$	10/11/08	$12: 30 \mathrm{PM}$	$\begin{array}{r} 57 \\ 449 \\ 897 \\ 1,009 \end{array}$
2	Crown Avenue, $1-210$ NB Off Ramp/ Foothill Boulevard [2]	05/28/08	NB SB EB WB	7.15	$\begin{aligned} & 836 \\ & 250 \\ & 668 \\ & 390 \\ & \hline \end{aligned}$	5:00	$\begin{aligned} & 682 \\ & 215 \\ & 429 \\ & 504 \end{aligned}$	10/11/08	$12: 30 \mathrm{PM}$	$\begin{aligned} & 531 \\ & 144 \\ & 300 \\ & 295 \\ & \hline \end{aligned}$
3	1-210 Freeway SB On/Off Ramps/ Berkshire Place [2]	05/28/08	NB SB EB WB	$7: 15$	$\begin{array}{r} 0 \\ 762 \\ 466 \\ 305 \end{array}$	5:00	$\begin{array}{r} 0 \\ 199 \\ 159 \\ 516 \end{array}$	10/11/08	1:00 PM	$\begin{array}{r} 0 \\ 132 \\ 144 \\ 176 \end{array}$
4	1-210 Freeway NB On/OffRamps/ Berkshire Place [2]	05/28/08	NB SB EB WB	$7: 15$	$\begin{array}{r} 434 \\ 0 \\ 1,055 \\ 827 \end{array}$	5:00	$\begin{array}{r} 229 \\ 0 \\ 240 \\ 854 \end{array}$	10/11/08	1:00 PM	$\begin{array}{r} 139 \\ 0 \\ 150 \\ 250 \end{array}$
5	Oak Grove Drive/ Foothill Boulevard [2]	05/28/08	NB SB EB WB	7:30	$\begin{array}{r} 935 \\ 91 \\ 741 \\ 141 \\ \hline \end{array}$	5:00	$\begin{array}{r} 396 \\ 981 \\ 280 \\ 35 \\ \hline \end{array}$	10/11/08	12:45 PM	$\begin{array}{r} 226 \\ 82 \\ 239 \\ 69 \end{array}$
6	Oak Grove Drive/ Berkshire Place [2]	05/28/08	NB SB EB WB	$7: 15$	$\begin{array}{r} 442 \\ 863 \\ 1,277 \\ 0 \end{array}$	5:00	$\begin{array}{r} 235 \\ 1,044 \\ 293 \\ 0 \end{array}$	10/11/08	12:45 PM	$\begin{array}{r} 209 \\ 326 \\ 182 \\ 0 \end{array}$
7	Linda Vista Avenue/ Oak Grove Drive [2]	05/28/08	NB SB EB WB	7:30	$\begin{array}{r} 221 \\ 0 \\ 241 \\ 442 \\ \hline \end{array}$	5:00	$\begin{array}{r} 144 \\ 0 \\ 332 \\ 210 \\ \hline \end{array}$	10/11/08	1:00 PM	$\begin{array}{r} 104 \\ 0 \\ 204 \\ 183 \end{array}$
8	Highland Drive-Linda Vista Avenue/ Highland Drive [2]	05/28/08	NB SB EB WB	7:30	$\begin{array}{r} 0 \\ 238 \\ 163 \\ 154 \\ \hline \end{array}$	4:15	$\begin{array}{r} 0 \\ 133 \\ 96 \\ 147 \\ \hline \end{array}$	10/11/08	1:00 PM	$\begin{array}{r} 0 \\ 105 \\ 72 \\ 93 \end{array}$
9	Windsor Avenuel Oak Grove Drive-Woodbury Road [3]	2004	NB SB EB WB		$\begin{array}{r} 1,340 \\ 756 \\ 205 \\ 943 \\ \hline \end{array}$		$\begin{array}{r} 1,127 \\ 714 \\ 366 \\ 568 \\ \hline \end{array}$	10/11/08	12:15 PM	$\begin{aligned} & 734 \\ & 364 \\ & 151 \\ & 453 \\ & \hline \end{aligned}$

[1] Counts conducted by The Traffic Solution.
[2] The year 2004 and 2008 manual traffic counts were increased at an annual rate of 1.5 percent (1.5\%) to reflect existing year 2009 conditions.

FIGURE 5-2
EXISTING TRAFFIC VOLUMES

6.0 Cumulative Projects

The forecast of future pre-project conditions was prepared in accordance with procedures outlined in Section 15130 of the CEQA Guidelines. Specifically, the CEQA Guidelines provides two options for developing the future traffic volume forecast:
"(A) A list of past, present, and probable future projects producing related or cumulative impacts, including, if necessary, those projects outside the control of the [lead] agency, or
(B) A summary of projections contained in an adopted general plan or related planning document, or in a prior environmental document which has been adopted or certified, which described or evaluated regional or areawide conditions contributing to the cumulative impact. Any such planning document shall be referenced and made available to the public at a location specified by the lead agency."

Accordingly, the traffic analysis provides a highly conservative estimate of future pre-project traffic volumes as it incorporates both the "A" and "B" options outlined in the CEQA Guidelines for purposes of developing the forecast. In general, a review of cumulative impacts must address approved related projects under construction, approved related projects not yet under construction, and unapproved projects under environmental review with related impacts or which result in significant cumulative impacts.

6.1 Related Projects

A forecast of on-street traffic conditions prior to occupancy of the proposed project was prepared by incorporating the potential trips associated with other known development projects (related projects) in the area. With this information, the potential impact of the proposed project can be evaluated within the context of the cumulative impact of all ongoing development. The list of related projects was based on information on file at the City of Pasadena Departments of Planning and Transportation, City of La Canada and County of Los Angeles, as well as recently accepted traffic impact analysis reports prepared for projects in the vicinity of the proposed HWP Annex project site. The list of related projects in the project site area is presented in Table 6-1. The location of the related projects is shown in Figure 6-1. The list of related projects was submitted to City of Pasadena Department of Transportation staff for review and acceptance.

Table 6-1
LIST OF RELATED PROJECTS [1]

11-Miar-2009						
	$\begin{aligned} & \text { MAP } \\ & \text { NO. } \end{aligned}$	PROJECT NAME/ PROJECT NO.	LOCATION	LAND USE	SIZE	STATUS
	L.CFI	La Cañada Town Center Project [2]	South of Interstate 210, north of Foothill Boulevard, east of Angeles Crest Highway, and west of Lilian Court	Shopping Center Restaurant (Existing Shopping Center) (Existing Single-Family Detached Housing)	$\begin{aligned} & 103.200 \mathrm{GLSF} \\ & \text { 8.000 GSF } \\ & \text { (28.000) GLSF } \\ & \text { (25) DU } \end{aligned}$	 Occupied
	CITY OF PASADENA					
$\begin{aligned} & \text { ' } \\ & \text { No } \end{aligned}$	PI	Upper Arroyo Seco Project [3] (Hahamongna Watershed Park Mister Plan)	North of Oak Grove Drive, west of Windsor Avenue, and south of Explorer Road	West Side Picnic Amenities Sycamore Grove Field Sunrise Overlook Sunset Overlook	15 Acres 2 Ficlds 1 Acre 2 Acres	75\% Complete Proposed Proposed Proposed

[1] Sources:

- Cily of La Cañada Flintridge Plaming Department and website.
- City of Pasadena Department of Planning, Parks \& Natural Resources Division, and Pasadena Department of Transportation.
- County of Los Angeles Department of Regional Planning.
[2] Source: "Traffic Sludy for La Caĩada Town Center", prepared by Meyer, Mohaddes Associates, June 2006
[3] Source: "Tralfic Impact Study for the Arroyo Seco Master Plan Project", prepared by LLG Engineers, February 2002. and additional information provided by City of Pasadena Parks \& Natural Resources Division staff.

Traffic volumes expected to be generated by the related projects were calculated using rates provided in the Seventh Edition of Trip Generation, published by the Institute of Transportation Engineers (ITE) [Washington D.C., 2003]. The related projects respective traffic generation for the weekday AM and PM peak hours and weekend mid-day peak hour, as well as on a daily basis for a typical weekday and weekend day, is summarized in Table 6-2. The anticipated distribution of the related projects traffic volumes to the study intersections during the weekday AM and PM peak hours is displayed in Figures 6-2 and 6-3, respectively. The anticipated distribution of the related projects traffic volumes to the study intersections during the weekend mid-day peak hour is displayed in Figure 6-4.

6.2 Ambient Traffic Growth Factor

In order to account for area-wide regional growth not included in this analysis, the existing traffic volumes were increased at an annual rate of one and one-half percent (1.5%) to the year 2014 (i.e., the anticipated year of project build-out). The ambient growth factor was based on general traffic growth factors provided in the 2004 Congestion Management Program for Los Angeles County (the "CMP manual") and determined in consultation with PasDOT staff. It is noted that based on review of the general traffic growth factors provided in the CMP manual for the San Gabriel Valley area, it is anticipated that the existing traffic volumes are expected to increase at an annual rate of less than 1.0% per year between the years 2005 and 2025 . Thus, application of this annual growth factor allows for a conservative, worst case forecast of future traffic volumes in the area. Further, it is noted that the CMP manual's traffic growth rate is intended to anticipate future traffic generated by development projects in the project vicinity. Thus, the inclusion in this traffic analysis of both a forecast of traffic generated by known related projects plus the use of an ambient growth traffic factor based on CMP traffic model data results in a conservative estimate of future traffic volumes at the study intersections.

Table 6-2
RELATED PROJECTS WEEKDAY AND WEEKEND TRIP GENERATION [1]

$\begin{aligned} & \text { MAP } \\ & \text { NO. } \end{aligned}$	LAND USE	SIZE	WEEKDAY CONDITIONS							WEEKEND CONDITIONS			
			DALLYTRIP ENDS [2]VOLUMES	AM PEAK HOUR VOLUMES [2]			PM PEAK HOUR VOLUMES [2]			DAILYTRIP ENDS $[2]$volumes	MID-DAY' PEAK HOUR vOLUMES [2\|		
				IN	OUT	TOTAL	IN	OUT	TOTAL		IN	OUT	TOTAL
CITY OF LA CANADA FLINTRIDGE													
LCFI	La Cañada Town Center Project [3] Shopping Center Restauramt (Existing Shopping Center) (Existing Single Family Detached Housing)	$\begin{aligned} & 103,200 \mathrm{GLSF} \\ & 8,000 \mathrm{GSF} \\ & (28.000) \mathrm{GLSF} \\ & \text { (25) DU } \end{aligned}$	4,007	90	60	150	173	171	344	4.772	283	227	510
CITY OF PASADENA													
PI	Upper Arroyo Seco Project [4] West Side Picnic Amenities Sycamore Grove Field Sunrise Overlook Sunset Overlook	15 Acres 2 Fields 1 Acre 2 Acres	2,196	13	4	17	107	146	253	2.520	141	169	310
TOTAL			6,203	103	64	167	280	317	597	7.292	424	396	820

[1] Source: ITE "Trip Generation". 7th Edition, 2003, unless otherwise noted.
[2] Trips are one-way traffic movements, entering or leaving.
[3] Source: "Traffic Study for La Cañada Town Center", prepared by Meyer, Mohaddes Associates, June 2006.
$[4]$ Source: "Traffic Impact Study for the Arroyo Seco Master Plan Project", prepared by LLG Engineers, February 2002.

7.0 Traffic Forecasting Methodology

In order to estimate the traffic impact characteristics of the HWP Annex project, a multi-step process has been utilized. The first step is trip generation, which estimates the total arriving and departing traffic volumes on a peak hour and daily basis. The traffic generation potential is forecast by applying the appropriate vehicle trip generation equations or rates to the project development tabulation.

The second step of the forecasting process is trip distribution, which identifies the origins and destinations of inbound and outbound project traffic volumes. These origins and destinations are typically based on demographics and existing/anticipated travel patterns in the study area.

The third step is traffic assignment, which involves the allocation of project traffic to study area streets and intersections. Traffic assignment is typically based on minimization of travel time, which may or may not involve the shortest route, depending on prevailing operating conditions and travel speeds. Traffic distribution patterns are indicated by general percentage orientation, while traffic assignment allocates specific volume forecasts to individual roadway links and intersection turning movements throughout the study area.

With the forecasting process complete and project traffic assignments developed, the impact of the proposed project is isolated by comparing operational (i.e., Levels of Service) conditions at the selected key intersections using expected future traffic volumes with and without forecast project traffic. The need for site-specific and/or cumulative local area traffic improvements can then be evaluated and the significance of the project's impacts identified.

7.1 Project Traffic Generation

Traffic generation is expressed in vehicle trip ends, defined as one-way vehicular movements, either entering or exiting the generating land use. Traffic volumes to be generated by the proposed HWP Annex project were forecast for the weekday AM and PM peak hours, and over a 24 -hour period as well as for the weekend mid-day peak hour and weekend 24 -hour period. The resource typically used by traffic engineers (including the City of Pasadena) to forecast trip generation for development projects is the ITE Trip Generation manual. However, in this instance, the ITE manual does not provide trip rates for a land use such as the project. The HWP Annex land use is unique due to the nature of the planned land use components of the proposed project, expected project programming (e.g., classes, events, exhibit halls), etc. Therefore, PasDOT staff determined it would be appropriate to forecast the trips generated by the project based on the project's land use components, anticipated visitor arrival and departure patterns during typical weekdays and weekend days, and expected class, event, etc., programming.

7.1.1 Trip Generation Assumptions

The trip generation forecasts for the HWP Annex project were derived based on information provided by City of Pasadena Parks \& Natural Resources Division staff (i.e., the project's land use components, anticipated visitor arrival and departure patterns during typical weekdays and weekend days, and expected classes, event and other programming). As previously mentioned, a summary of anticipated visitor arrival and departure patterns for typical weekdays and weekend days is provided in Appendix Tables $A-1$ and $A-2$, respectively. The project trip generation was forecast based on the following considerations:

- Although other existing and ancillary users are envisioned (e.g., bicycle riders, picnic and outdoor area users, dog walkers, etc.) as part of the project, the Educational Center and Equestrian components of the project are anticipated to generate additional vehicular trips to the site;
- One general class/conference session during a typical weekday and two sessions during a typical weekend day will be held at the Educational Center;
- The Educational Center will accommodate an average of 175 class/conference attendees, which results in 70 vehicles based on an average vehicle ridership of 2.5 persons per vehicle;
- Visitors to the Educational Center (i.e., information booths, exhibit halls, area) are anticipated to arrive and depart the site after a brief stay during the morning, mid-day and afternoon periods (approximately 10 vehicles during typical weekdays and 20 vehicles during typical weekend days);
- The growing bed/plant labs are anticipated to accommodate two class sessions during a typical mid-weekday for educational groups (e.g., Caltech and Pasadena City College staff/students) that will arrive and depart the site via vans;
- The community volunteer center is anticipated to generate approximately nine vehicles during a typical weekday and nine vehicles during typical weekend days, with volunteers arriving in two sessions;
- It is envisioned that there will be an increase in the number and usage of the equestrian boarding facilities (i.e., 36 horse boarding stalls will increase to a maximum of 70 horse boarding stalls) during typical weekdays and weekend days (approximately nine additional vehicles two times per day during a typical weekday and eight additional vehicles during the morning and six additional vehicles in the aftemoon during a typical weekend day);
- It is anticipated that there will be an increase in usage of the other equestrian facilities (i.e., public event area, riding ring, clubhouse, staging areas, etc.) during a typical weekdays and weekend days when they become available both to public and private groups as part of the proposed project (approximately one additional vehicle in the morning and five additional vehicles in the afternoon during a typical weekday and five additional vehicles two times per day during a typical weekend day);
- It is estimated that there will be an increase in usage of the existing therapeutic riding program/classes during a typical weekday and weekend day when this existing land use is relocated to a larger portion of the Annex site (approximately four additional vehicles two times per day during typical weekdays and three additional vehicles once during a weekend day);

7.1.2 Project Weekday Trip Generation

The forecast of the vehicular trips anticipated to be generated by the proposed project are presented in Table 7-1. The project trip generation forecast was submitted for review and acceptance by PasDOT staff. As summarized in Table 7-1, the proposed project is expected to generate 84 vehicle trips (84 inbound trips) during the weekday AM peak hour. During the weekday PM peak hour, the proposed project is expected to generate 79 vehicle trips (79 outbound trips). Over a 24 -hour period, the proposed project is forecast to generate approximately 336 daily trip ends during a typical weekday (168 inbound trips and 168 outbound trips).

7.1.3 Project Weekend Trip Generation

The weekend traffic generation forecast for the proposed project also is summarized in Table 7-1. The project trip generation forecast was submitted for review and acceptance by PasDOT staff. As presented in Table 7-1, the proposed project is expected to generate 160 net new vehicle trips (90 inbound trips and 70 outbound trips) during the weekend mid-day peak hour. Over a 24 -hour period, the proposed project is forecast to generate 490 net new daily trip ends during a typical weekend (245 inbound trips and 245 outbound trips).

LAND USE	SIZE	WEEKDAY							WEEKEND			
		DAILYTRIP ENDS $\|2\|$VOLUMES	AM PEAK HOUR vOLUMES [2]			PM PEAK HOUR vOLUMES [2]			$\begin{array}{\|c\|} \hline \text { DAILY } \\ \text { TRIP ENDS }\|2\| \\ \text { VOLUMES } \\ \hline \end{array}$	MID-DAY PEAK HOUR volumes [2\|		
			IN	OUT	TOTAL	IN	OUT	TOTAL		IN	OUT	total
HWP Annex Proiect [3]	30 Acres	336	84	0	84	0	79	79	490	90	70	160
AL		336	84	0	84	0	79	79	490	90	70	160

(1) Source: Information provided by City of Pasadena Parks \& Natural Resources Division staff. Volumes presented reflect the additional raffic that is forecast to be generated by the Annex site with the project.
[2] Trips are one-way trafic movements, entering or leaving.
[3] Trip generation forecasts for the project have been derived based on the project's land use components, anticipated visitor arrival and depanure
patterns during typical weekdays and weekend days, and expected classes, event, etc., programming. Refer to Appendix Tables A-1 and A-2 for a surmmary of the anticipated visitor arrival and departure patterns during typical weekdays and weekend days, respectively. for land use components that are expected to generate additional vehicle trips to the Annex site.
The following project information and data was provided by City staff:

- Although other ancillary uses arc envisioned (e.g., bike riders, pienic. and outdoor areas. elc.), the Educational Center and Equestrian components of the
proposed project are anticipated to generate additional vehicular trips to the site. (Based on the 2007 Summary of Programs \& Events. reponted by
Aunces lenants and presented to the HWPAC on 4/13/08)
- At the Educational Center, one general clas5/conference session will be held during a typical weekday and two sessions during a typical weekend day
- thic Educational Center, one general clas5/conference session will be held during a typical we
- Visitors are inticipated at the Education Center (e.g., to the information area, exhibit halls. etc.).
- It is envisioned that the project would increase the usage of the existing equestrian boording facility, other equestrian facilities (i.e., public event areas, riding ring, slaging area. ele.). and the therapeutic riding program.
Oilher equestrian facilities include public event areas, riding ring, staging areas, etc., provided within the Annex site.
The daily and penk hour traffic volume forecasts for the project are based on the following assumptions:
Weckday Canditious

Dily Trips

Compumen	Trijs
Conference Attendees	140
Visitors	60
Growing Beds/Labs	36
Community Volunteer Ctr	36
Equestrian Boarding	36
Olher Equestrian Facilities	12
Therapcutic Riding Pem	16

Daily Trips	
(immpment	Trins
Confercnce Attendecs	280
Visilors	120
Groving Bels/Labs	0
Community Volunter Cir	36
Equestrian Boarding	28
Other Equestrian Facilisies	20
Therapeutic Riding Pgm	6
Tolat	490

AMPeak_Hour Trips.

Compmentil	In	Oll
Conference Allendces	70	0
Community Volunter Cir	9	0
Ohher Equestrian Facilities	1	0
Therapeuic Riding Pym	4	0
Total	84	0

Wackemu Comditions

Mid-Day_Peak_HourTrips.		
CimponcIII	In	Out
Conference Attendees	70	70
Community Volunteer Ctr	9	0
Equestrian Boarding	6	0
Ohher Equestrian Facilities	5	0
Total	90	70

7.1.4 Trip Generation Comparison

For comparison purposes, a project trip generation forecast based on trip rates from the ITE Trip Generation manual was reviewed. The ITE trip generation rates for Regional Park (ITE Land Use Code 417) indicate a weekday daily rate of 4.57 trips per acre, an AM peak hour rate of 0.20 trips per acre, and a PM peak hour of generator rate of 0.26 trips per acre. For a weekend condition (i.e., Saturday), the manual indicates a daily rate of 5.65 trips per acre and a mid-day peak hour rate of 0.34 trips per acre. Application of these ITE trip generation rates to the 30 -acre Annex site would yield a total of six AM peak hour vehicle trips, eight PM peak hour vehicle trips, and 137 daily trips during a weekday. For a weekend day, application of the ITE trip generation rates would yield a total of 10 mid-day peak hour vehicle trips and 170 daily trips. It should be noted that the ITE trip generation forecast reflects trips associated with both the existing and proposed uses at the Annex site, as compared to the employed methodology (i.e., based on planned land use components and expected programming, and typical weekday and weekend day visitor arrival and departure patterns at the site) which forecasts only the new vehicle trips anticipated to be generated by the project. By comparison, the estimated new vehicular trip generation based on the methodology employed in the traffic analysis is higher than the ITE trip generation forecast based on the entire site (existing and proposed uses). Therefore, a forecast based on the incorporated methodology provides a conservative estimate of new vehicular trips associated with the project.

7.2 Project Trip Distribution and Assignment

Project traffic volumes both entering and exiting the site have been distributed and assigned to the adjacent street system based on the following considerations:

- The site's proximity to major traffic corridors (i.e., Foothill Boulevard, Arroyo Boulevard, Woodbury Road, etc.);
- Expected localized traffic flow patterns based on adjacent roadway channelization and presence of traffic signals;
- Existing intersection traffic volumes;
- The anticipated visitor arrival and departure information for each land use component provided by City staff;
- Ingress/egress availability planned for the proposed project; and
- Input from PasDOT staff.

The general, directional traffic distribution patterns for the proposed HWP Annex project during the weekday AM and PM and weekend mid-day peak hours are presented in Figure 7-1.

7.2.1 Project Weekday Trip Assignment

The forecast weekday AM and PM peak hour project traffic volumes at the study intersections associated with the proposed project are presented in Figures $\mathbf{7 - 2}$ and 7-3, respectively. The traffic volume assignments presented in Figures $7-2$ and $7-3$ reflect the traffic distribution characteristics shown in Figure 7-1 and the project traffic generation forecast presented in Table 7-1.

7.2.2 Project Weekend Trip Assignment

The forecast weekend mid-day peak hour project traffic volumes at the study intersections associated with the proposed project are presented in Figure 7-4. The traffic volume assignments presented in Figure 7-4 reflect the traffic distribution characteristics shown in Figure 7-1 and the project traffic generation forecast presented in Table 7-1.

8.0 Traffic Impact Ânalysis Methodology

The nine study intersections were evaluated using the Intersection Capacity Utilization (ICU) method of analysis, which determines Volume-to-Capacity (v / c) ratios on a critical lane basis. The overall intersection v / c ratio is subsequently assigned a Level of Service (LOS) value to describe intersection operations. Level of Service varies from LOS A (free flow) to LOS F (jammed condition). A description of the ICU method and corresponding Level of Service is provided in Appendix C.

8.1 Impact Criteria and Thresholds

The relative impact of the added project traffic volumes to be generated by the proposed HWP Annex project during the weekday AM and PM peak hours and weekend mid-day peak hour was evaluated based on analysis of future operating conditions at the study intersections, without and with the proposed project. The previously discussed capacity analysis procedures were utilized to evaluate the future v / c relationships and service level characteristics at each study intersection.

The significance of the potential impacts of project-generated traffic at each study intersection was identified using criteria set forth in the City of Pasadena's Transportation Impact Review Current Practice and Guidelines. According to the City's Sliding Scale Method for calculating the level of impact due to traffic generated by the proposed project, a significant transportation impact is determined based on the criteria presented in Table 8-1.

Table 8-1CITY OF PASADENAINTERSECTION IMPACT THRESHOLD CRITERIA		
Final $\boldsymbol{v} / \mathrm{c}$	Level of Service	Project Related Increase in $\boldsymbol{v} / \mathrm{c}$
0.000-0.600	A	equal to or greater than 0.06
$>0.600-0.700$	B	equal to or greater than 0.05
$>0.700-0.800$	C	equal to or greater than 0.04
$>0.800-0.900$	D	equal to or greater than 0.03
$>0.900-1.000$	E	equal to or greater than 0.02
>1.000	F	equal to or greater than 0.01

The City's Sliding Scale Method requires mitigation of project traffic impacts whenever traffic generated by the proposed development causes an increase of the analyzed intersection v / c ratio by an amount equal to or greater than the values shown above.

The ICU calculations use a lane capacity of 1,700 vehicles per hour (vph) for left-turn, through and right-turn lanes, and a dual turn lane capacity of $3,060 \mathrm{vph}$. A clearance interval of 0.10 is also included in the ICU calculations.

8.2 Traffic Impact Analysis Scenarios

Traffic impacts at the study intersections were analyzed for the following conditions:
[a] Existing conditions.
[b] Condition [a] plus 1.5 percent (1.5\%) ambient traffic growth through year 2014.
[c] Condition [b] with completion and occupancy of the related projects.
[d] Condition [c] with completion and occupancy of the proposed project.
[e] Conditions [d] with implementation of project mitigation measures, where necessary.
The traffic volumes for each new condition were added to the volumes in the prior condition to determine the change in capacity utilization at the nine study intersections. The proposed project ICU data worksheets for the analyzed intersections are contained in Appendix C.

9.0 Traffic Analysis

Summaries of the v / c ratios and LOS values for the study intersections during the weekday AM and PM and weekend mid-day peak hours are shown in Table 9-1.

9.1 Existing Conditions

9.1.1 Existing Weekday Conditions

As indicated in column [1] of Table 9-1, all of the study intersections are presently operating at LOS C or better during the weekday AM and PM peak hours under existing conditions. As previously mentioned, the existing traffic volumes at the study intersections during the weekday AM and PM peak hours are displayed in Figures 5-1 and 5-2, respectively.

9.1.2 Existing Weekend Conditions

As indicated in column [1] of Table 9-1, all of the study intersections are presently operating at LOS C or better during the weekend mid-day peak hour under existing conditions. As previously mentioned, the existing traffic volumes at the study intersections during the weekend mid-day peak hour are displayed in Figure 5-3.

9.2 Existing With Ambient Growth Conditions

9.2.1 Existing With Ambient Growth Weekday Conditions

Growth in traffic due to the combined effects of continuing development, intensification of existing developments and other factors was assumed to be 1.5 percent (1.5%) per year through year 2014. This ambient growth incrementally increases the v / c ratios at all of the study intersections. As shown in column [2] of Table 9-1, all of the study intersections are expected to operate at LOS D or better during the weekday AM and PM peak hours with the addition of ambient growth traffic.

The existing with ambient growth traffic volumes at the study intersections during the weekday AM and PM peak hours are shown in Figures 9-1 and $9-2$, respectively.

9.2.2 Existing With Ambient Growth Weekend Conditions

Growth in traffic due to the combined effects of continuing development, intensification of existing developments and other factors was assumed to be 1.5 percent (1.5\%) per year through year 2014. This ambient growth incrementally increases the v / c ratios at all of the study intersections. As shown in column [2] of Table 9-1, all of the study intersections are expected to continue operating at LOS C or better during the weekend mid-day peak hour with the addition of ambient growth traffic.

The existing with ambient growth traffic volumes at the study intersections during the weekend midday peak hour is shown in Figure 9-3

Table 9-1
SUMMARY OF VOLUME TO CAPACITY RATIOS
and Levels of service
WEEKDAY AND WEEKEND CONDITIONS

City of Pasadena intersection impact threshold criteria is as follows:

Final_v/c LOS	Projecl Related Increase in v/c	
$>=0.000-0.600$	A	equal to or greater than 0.06
$>=0.600-0.700$	B	equal to or greater than 0.05
$>=0.700-0.800$	C	equal to or greater than 0.04
$>=0.800-0.900$	D	equal to or greater than 0.03
$>=0.900-1.000 \mathrm{E}$		equal to or greater than 0.02
>1.000		

FIGURE 9-2 EXISTING WITH AMBIENT GROWTH TRAFFIC VOLUMES WEEKDAY PM PEAK HOUR

9.3 Future Pre-Project Conditions

9.3.1 Future Pre-Project Weekday Conditions

The v / c ratios at all nine study intersections are incrementally increased with the addition of traffic generated by the related projects listed in Table 6-1. As presented in column [3] of Table 9-1, all of the study intersections are expected to continue operating at LOS D or better during the weekday AM and PM peak hours with the addition of ambient traffic growth and the traffic due to the related projects.

The future pre-project (existing, ambient growth and related projects) traffic volumes at the study intersections during the weekday AM and PM peak hours are presented in Figures 9-4 and 9-5, respectively.

9.3.2 Future Pre-Project Weekend Conditions

As presented in column [3] of Table 9-1, all of the study intersections are expected to continue operating at LOS C or better during the weekday AM and PM peak hours with the addition of ambient traffic growth and the traffic due to the related projects.

The future pre-project (existing, ambient growth and related projects) traffic volumes at the study intersections during the weekend mid-day peak hour are presented in Figure 9-6.

9.4 Future With Project Conditions

9.4.1 Future With Project Weekday Conditions

As shown in column [4] of Table 9-1, application of the City's threshold criteria to the "With Proposed Project" indicates that the proposed project is not expected to create any significant impacts at the study intersections. Incremental but not significant impacts are noted at the study intersections, as presented in Table 9-1. Because there are no significant impacts, no traffic mitigation measures are required or recommended for the study intersections.

The future with project (existing, ambient growth, related projects and project) traffic volumes at the study intersections during the weekday AM and PM peak hours are illustrated in Figures 9-7 and 98 , respectively.

9.4.2 Future With Project Weekend Conditions

As shown in column [4] of Table 9-1, application of the City's threshold criteria to the "With Proposed Project" indicates that the proposed project is not expected to create any significant impacts at the study intersections during the weekend mid-day peak hour. Incremental but not significant impacts are noted at the study intersections, as presented in Table 9-1. Because there are no significant impacts, no traffic mitigation measures are required or recommended for the study intersections.

The future with project (existing, ambient growth, related projects and project) traffic volumes at the study intersections during the weekday AM and PM peak hours are illustrated in Figure 9-9.

10.0 Street Segment Analysis

As required by City of Pasadena traffic study guidelines, existing and existing with project Average Daily Traffic (ADT) volumes were determined at two street segment locations in the vicinity of the proposed HWP Annex project. The City of Pasadena ADT impact threshold criteria for street segments are listed in Table 10-1.

Table 10-1 CITY OF PASADENA	
STREET SEGMENT IMPACT THRESHOLD CRITERIA	

The following two street segment locations were identified for analysis by City of Pasadena staff for inclusion in the ADT analysis:

1. Highland Drive east of Berkshire Avenue.
2. Linda Vista Avenue east of Highland Drive

Automatic 24 -hour machine traffic counts of the study street segments were conducted by a traffic subconsultant. Copies of the weekday and weekend 24 -hour machine traffic counts for the study street segment locations are contained in Appendix D.

10.1 Summary of Weekday Street Segment Analysis

The existing and forecast existing with project ADT volumes at the street segment study locations during a typical weekday are summarized in Table 10-2. The existing weekday ADT volume is shown in column [1]. The forecast project weekday ADT volume at the study locations are shown in column [2]. In addition, the forecast existing with project weekday ADT volume for the study locations are presented in column [3]. Finally, the project-related percent increase in ADT growth for the analyzed street segments during a typical weekday are presented in column [4].

Application of the City"s threshold criteria to the "Existing With Project" scenario indicates that the proposed HWP Annex project is not expected to create significant impacts at either of the two study street segments during a typical weekday. As indicated in Table 10-2, the proposed project is forecast to increase ADT volumes on the study street segments during a typical weekday by approximately 0.5 to 0.6 percent, which requires PasDOT staff review and conditions.

10.2 Summary of Weekend Street Segment Analysis

The existing and forecast existing with project ADT volumes at the street segment study locations during a typical weekend day are summarized in Table 10-3. The existing weekend ADT volume is shown in column [1]. The forecast project weekend ADT volume at the study locations are shown in column [2]. In addition, the forecast existing with project weekend ADT volume for the study locations are presented in column [3]. Finally, the project-related percent increase in ADT growth for the analyzed street segments during a typical weekend are presented in column [4].

Application of the City's threshold criteria to the "Existing With Project" scenario indicates that the proposed HWP Annex project is not expected to create significant impacts at either of the two study street segments during a typical weekend day. As indicated in Table 10-3, the proposed project is forecast to increase ADT volumes on the study street segments during a typical weekend day by approximately 0.9 to 1.5 percent, which requires PasDOT staff review and conditions.

Table 10-2
SUMMARY OF WEEKDAY STREET SEGMENT ANALYSIS

Location	Dir.	[1] Existing Weekday ADT Volume	[2] Daily Project Trip Ends Volume	[3] Existing W/Project ADT Volume ([1]+[2])	$[4]$ Percent ADT Growth $([2] /[3])$
1 Highland Drive east of Berkshire Avenue	$\begin{aligned} & \text { NB } \\ & \text { SB } \end{aligned}$	$\begin{aligned} & 1,260 \\ & 1,206 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,268 \\ & 1,214 \end{aligned}$	$\begin{aligned} & 0.6 \% \\ & 0.7 \% \end{aligned}$
Total Location 1		2,465	16	2,481	0.6\%
2 Linda Vista Avenue east of Highland Drive	$\begin{aligned} & \text { NB } \\ & \text { SB } \end{aligned}$	$\begin{aligned} & 1,701 \\ & 1,703 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,709 \\ & 1,711 \end{aligned}$	$\begin{aligned} & 0.5 \% \\ & 0.5 \% \end{aligned}$
Total Location 2		3,404	16	3,420	0.5\%

[1] Existing ADT volumes based on traffic counts conducted on May 28, 2008. Copies of the summary data worksheets of the 24 -hour traffic count are provided in Appendix D. The year 2008 traffic volumes were increased at an annual rate of 1.5 percent (1.5\%) to reflect existing year 2009 conditions.
[2] Weekday daily project volume includes inbound and outbound trips based on the proposed project increase of 336 daily trip ends (168 inbound trips and 168 outbound trips).
[3] Total of columns [1] and [2].
[4] Column [2] divided by column [3].

City of Pasadena ADT impact thresholds for street segments are as follows:

ADT Growth on Street Segment	Review	Required Mitigation
0.0-2.4\% ADT Growth	Project review/initial study	Staff revjew and conditions
$2.5-4.9 \%$ ADT Growth	Initial study/focused traffic study	Soft mitigation (TDM, etc.)
5.0-7.4\% ADT Growth	Initial study/full traffic study	Sofuphysical mitigation; alternatives
7.5\% + ADT Growth	Initial study/full traffic study	Soft/physical mitigation; alternatives

Table 10-3
SUMMARY OF WEEKEND STREET SEGMENT ANALYSIS

Location	Dir.	$[1]$ Existing Weekend ADT Volume	[2] Daily Project Trip Ends Volume	[3] Existing W/Project ADT Volume $([1]+[2])$	$\begin{gathered} {[4]} \\ \text { Percent } \\ \text { ADT } \\ \text { Growth } \\ ([2] /[3]) \\ \hline \end{gathered}$
1 Highland Drive east of Berkshire Avenue	$\begin{gathered} \mathrm{NB} \\ \mathrm{SB} \end{gathered}$	$\begin{aligned} & 807 \\ & 790 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 819 \\ & 802 \end{aligned}$	$\begin{aligned} & 1.5 \% \\ & 1.5 \% \end{aligned}$
Total Location I		1,597	24	1,621	1.5\%
2 Linda Vista Avenue east of Highland Drive	$\begin{aligned} & \text { NB } \\ & \text { SB } \end{aligned}$	$\begin{aligned} & 1,415 \\ & 1,364 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 1,427 \\ & 1,376 \end{aligned}$	$\begin{aligned} & 0.8 \% \\ & 0.9 \% \end{aligned}$
Total Location 2		2,779	24	2,803	0.9\%

[1] Existing ADT volumes based on traffic counts conducted on Saturday, October 1], 2008. Copies of the summary data worksheets of the 24 -hour traffic count are provided in Appendix D. The year 2008 traffic counts were increased at an annual rate of 1.5 percent (1.5%) to reflect existing year 2009 conditions.
[2] Weekend daily project volume includes inbound and outbound trips based on the proposed project increase of 490 daily trip ends (245 inbound trips and 245 outbound trips).
[3] Total of columns [1] and [2].
[4] Column [2] divided by column [3].

City of Pasadena ADT impact thresholds for street segments are as follows:

ADT Growth on Street Segment
$0.0-2.4 \%$ ADT Growth
$2.5-4.9 \%$ ADT Growth
5.0-7.4\% ADT Growth 7.5% + ADT Growth

Review

Project review/initial study
Initial study/focused traffic study
Initial study/full traffic study Initial study/full traffic study

Required Mitigation
Staff review and conditions
Soft mitigation (TDM, etc.)
Sof/physical mitigation; alternatives
Soft/physical mitigation; alternatives

11.0 TRANSPORTATION IMPROVEMENT MEASURES

The following sections provide an overview of transportation improvement measures that are recommended to address project-related increases in ADT volumes on the local roadway network. It is important to note that the traffic analysis has been based on a conservative approach with respect to the analysis of potential project-related impacts.

11.1 Summary of Improvement Measures

As previously discussed, the proposed project is not expected to create any significant impacts at the study intersections and thus, no traffic mitigation measures are required or recommended. Application of the City's threshold criteria indicates that the proposed project is subject to staff review and conditions at the two study street segments. The following improvement measures are recommended:

- It is recommended that the City of Pasadena Parks and Natural Resources Division implement a policy to monitor special events and programs at the Annex site through the permitting process. It is envisioned that permits would be issued such that the parking demands generated by any event or simultaneous activities held at the Annex facilities would not exceed the proposed parking supply within the Annex unless sufficient off-site parking is identified and secured (e.g., JPL leased parking lot, parking within HWP [if available], other parking lots within City of Pasadena, etc.).
- If necessary to ensure clear visibility along the internal OGA north-south roadway at both the existing stop-sign controlled internal intersection and near the east-west roadway that provides access to the project site, selective pruning of any tree or understory vegetation (i.e., in keeping with what is allowed within a natural park setting) under the supervision of the park maintenance supervisor may be required.
- Install all-way stop control at the internal north-south roadway intersection with the east-west roadway that provides access within the Annex site.
- Install appropriate wayfinding signage to and from the proposed HWP Annex project site.
- Require vendor visits and service/deliveries at the project site to occur outside school peak periods.
- Establish travel routes to and from the site for City service vehicles (e.g., require all HWP Annex service vehicles to enter/exit at signalized Oak Grove Drive/Foothill Boulevard intersection entrance to the OGA and HWP).
- Public Works Department review the conditions and pavement integrity of access roadways within the OGA and HWP in terms of facilitating project-related vehicle traffic (i.e., roadway traffic index review).

11.2 Transportation Demand Management

In accordance with the City of Pasadena Trip Reduction Ordinance (No. 6573) and the City's traffic study guidelines, it is recommended that the proposed project implement a TDM program. The TDM measures implemented as part of the project should be aimed at decreasing the number of vehicular trips generated by persons traveling to the site by offering specific facilities, services and actions designed to increase the use of alternative transportation modes (e.g., transit, rail, walking, bicycling, carpool, etc.).

The TDM strategies will identify opportunities to reduce parking demand and automobile dependency, as well as to promote alternative travel modes. The final TDM program for the proposed project will be developed in conjunction with the City of Pasadena.

12.0 CONGESTION MANAGEMENT PROGRAM TRAFFIC IMPACT AsSESSMENT

The Congestion Management Program (CMP) is a state-mandated program that was enacted by the State Legislature with the passage of Proposition 111 in 1990. The program is intended to address the impact of local growth on the regional transportation system.

As required by the 2004 Congestion Management Program for Los Angeles County, a Traffic Impact Assessment (TIA) has been prepared to determine the potential impacts on designated monitoring locations on the CMP highway system. The analysis has been prepared in accordance with procedures outlined in the 2004 Congestion Management Program for Los Angeles County, County of Los Angeles Metropolitan Transportation Authority, July 2004.

12.1 Intersections

The following CMP intersection monitoring locations in the project vicinity has been identified:

- CMP Station Intersection

No. 119 Arroyo Parkway/California Boulevard
No. 121 Pasadena Avenue-St. John Avenue/California Boulevard
No. 121 Rosemead Boulevard/Foothill Boulevard
The CMP TLA guidelines require that intersection monitoring locations must be examined if the proposed project will add 50 or more trips during either the AM or PM weekday peak periods. The proposed project will not add 50 or more trips, during the AM or PM peak hours at the CMP monitoring intersection, which is the threshold for preparing a traffic impact assessment, as stated in the CMP manual. Therefore, no further review of potential impacts to intersection monitoring locations that are part of the CMP highway system is required.

12.2 Freeways

The following CMP freeway monitoring locations in the project vicinity has been identified:

- CMP Station Segment

No. 1060 I-210 Freeway west of SR-134/SR-710
No. 1061 I-210 Freeway at Rosemead Boulevard
No. 1056 SR-134 west of San Rafael Avenue
The CMP TIA guidelines require that freeway monitoring locations must be examined if the proposed project will add 150 or more trips (in either direction) during either the AM or PM weekday peak periods. The proposed project will not add 150 or more trips (in either direction),
during either the AM or PM weekday peak hours to the CMP freeway monitoring location, which is the threshold for preparing a traffic impact assessment, as stated in the CMP manual. Therefore, no further review of potential impacts to freeway monitoring locations that are part of the CMP highway system is required.

12.3 Transit Impact Review

As required by the 2004 Congestion Management Program for Los Angeles County, a review has been made of the CMP transit service. As previously discussed, existing transit service is provided in the vicinity of the proposed HWP Annex project.

The project trip generation, as shown in Table 7-1, was adjusted by values set forth in the CMP (i.e., person trips equal 1.4 times vehicle trips, and transit trips equal 3.5 percent of the total person trips) to estimate transit trip generation. Pursuant to the CMP guidelines, the proposed project is forecast to generate demand for four inbound transit trips during the weekday AM peak hour. During the weekday PM peak hour, the proposed project is anticipated to generate demand for four outbound transit trips. Over a 24 -hour period, the proposed project is forecast to generate demand for 16 daily weekday transit trips. During the weekend mid-day peak hour, the proposed project is anticipated to generate demand for eight transit trips (four inbound trips and four outbound trips). Over a 24 -hour period, the proposed project is forecast to generate demand for 24 daily weekend transit trips. The calculations are as follows:

- Weekday AM Peak Hour $=84 \times 1.4 \times 0.035=4$ Transit Trips
(Weekday PM Peak Hour $=79 \times 1.4 \times 0.035=4$ Transit Trips
- Daily Weekday Trips $=336 \times 1.4 \times 0.035=16$ Transit Trips
- Weekend Mid-Day Peak Hour $=160 \times 1.4 \times 0.035=8$ Transit Trips
- Daily Weekday Trips $=490 \times 1.4 \times 0.035=24$ Transit Trips

As shown in Table 4-1, eight transit lines and routes are provided adjacent to or in close proximity to the project site. As outlined in Table 4-1, under the "No. of Buses During Peak Hour" column, these lines generally provide services for an average of (i.e., average of the directional number of buses during the peak hours) 42 buses during the AM peak hour and 41 buses during the PM peak hour. Therefore, based on the above calculated AM and PM peak hour transit trips, this would correspond to less than one additional transit rider per bus. It is anticipated that the existing transit service in the project area will adequately accommodate the project-generated transit trips. Thus, given the low number of project-generated transit trips per bus, based on the calculated number of generated transit trips, no project impacts on existing or future transit services in the project area are expected to occur as a result of the proposed project.

13.0 Conclusions

This traffic analysis has been conducted to identify and evaluate the potential impacts of traffic generated by the proposed project. This traffic analysis evaluates potential project-related impacts at 11 locations, including nine study intersections and two street segments. Application of the City's threshold criteria to the "With Proposed Project" scenario indicates that none of the study intersections are anticipated to be significantly impacted by the proposed project traffic. Incremental, but not significant, impacts are noted at the study intersections. Application of the City's threshold criteria indicates that the proposed project is subject to staff review and conditions at the two study street segments. Transportation improvement measures are recommended to address project-related increases in ADT volumes along the local roadway network.

Appendix A

 hWP Annex Project Anticipated Usage Data
Appendix Table A-1

WEEKDAY CONDITIONS
SUMMARY OF VISITOR ARRIVAL AND DEPARTURE PATTERNS [1]

LAND USE COMPONENT	6:00 AM	7:00 AM	8:00 AM	9:00 AM	10:00 AM	11:00 AM	12:00 PM	1:00 PM	2:00 PM	3:00 PM	4:00 PM	5:00 PM	6:00 PM
EDUCATIONAL CENTER:	,												
Class/Conference Attendees [2]	1			4, 패:	4. ${ }^{\text {a }}$ -	\%.	70 Yehicles	*-					
	,												
Visitors	I			10 Vehicles			10 Vehicles			10 Vehicles			
	1												
Growing Beds/Plant Labs [3]				9 V	icles			9 Ych	es				
Community Volumteer Center [4]	1			9 Vehicles					9 Vehicles				
	!												
EQUESTRIAN:													
Equestrian Boarding [5]		9 Veh								9 Veh			
Other Equestrian Facilities [6]	I			1 Veli									
	!												
Therapeutic Riding Program [7]				4 Vehicles							4 Vehicles	\cdots	

[1] Source: City of Pasndena Parks and Natural Resources Division. Although other project components and uses are envisioned (i.e., existing and ancillary uses), this table reflects the arrival and departure patterns for those project components that are anticipated to generate additional vehicle trips and parking demand at the Annex site. The information presented reflects typical weekday conditions when the Amex is anticipated to be heavily utilized (1.e., June)
[2] Based on an estimated average of 175 attendees with average vehicle ridership of 2.5 persons per vehicle. Also, it is anticipated that one general session will be held during a typical mid-week day, with attendees artiving during the commuter AM peak hour and departing during the commuter PM peak hour.
[3] It is anticipated that large educational groups will artive and depart the site via vans. Also, it is assumed that two class sesssions will be held at the site during a typical mid-week day.
[4] Voluntecrs are anticipated to arrive in two sessions. The moming session volunteers are anticipated to arrive during the commuter AM peak hour.
$[5]$ It is envisioned that there will be an increase in the number and usage of the equestrian boarding facilities (i.e,, 36 horse boarding stalls will increase to a maximum of 70 horse boarding stalls) during a typicat mid-week day. It is anticipated that vehicles related to the equestrian boarding facilities would depart during the commuter PM peak hour.
[6] It is anlicipated that there will be an increase in usage of the other equestrian facilities (i.e., public event area, riding ring, staging area, etc.) during a typical mid-week day when they become available both to public and private groups as part of the proposed project. It is anticipated that velicles related to these equestrian facilities would arrive during the commuter AM peak hour
[7] It is estimated that there will be an increase in usage of the existing therapeutic riding program during a typical mid-week day when this existing land use is relocated within the site as part of the proposed project. It is anticipated that vehicles associated with the therapeutic riding program would arrive during the commuter AM peak hour.

Appendix Table A-2

WEEKEND CONDITIONS

SUMMARY OF VISITOR ARRIVAL AND DEPARTURE PATTERNS [1]

[1] Source: City of Pasadena Parks and Natural Resources Division. Although other project components and uses are envisioned (i.e., existing and ancillary uses), this table reflects the artival and departure patterns for those project components that are anticipated to generate additional velicle trips and parking demand at the Annex site. The information presented reflects typical weekend day (Saturday) conditions when the Annex is anticipated to be heavily utilized (i.e., June).
[2] Based on an estimated average of 175 attendees with average vehicle ridership of 2.5 persons per vehicle. Also, it is anticipated that two general sessions (i.e., one during the morning and one during the afternoon) will be held during a typical weekend day (Saturday), with the morming session attendees departing and afternoon session attendees artiving during the weekend mid-day peak hour.
31 No educational group classes or activities are planned as part of the proposed project during weekends.
[4] Volunteers are anticipated to arrive in two sessions. The afternoon session volunteers are anticipated to arrive during the weekend mid-day peak hour.
[5] It is envisioned that there will be an increase in the number and usage of the equestrian boarding facilities (i.e., 36 horse boarding stalls will increase to a maximum of 70 horse boarding stalls) during a typical weekend day (Saturday). It is anticipated that vehicles related to the equestrian boarding facilities would arrive during the weekend mid-day peak hour.
$[6]$ It is anticipated that there will be an increase in usage of the other equestrian facilities (i.e., public event area, riding ring, staging area, etc.) during a typical weekend day (Saturday) when they become available both to public and private groups as part of the proposed project. It is anticipated that vehicles related to these equestrian facilities would arive during the weekend mid-day peak hour.
[7] II is estimated that there will be an incrense in usage of the existing therapeutic riding progran during a typical weekend day (Saturday) when this existing land use is relocated within the site as part of the proposed project.

Appendix Table A-3

ANNEX SPECIAL EVENT SCENARIO SUMMARY OF VISITOR ARRIVAL AND DEPARTURE PATTERNS [1]

LAND USE COMPONENT	6:00 AM ${ }_{\text {1 }}$	7:00 AM	8:00 AM	9:00 AM	10:00 AM	11:00 AM	12:00 PM	1:00 PM	2:00 PM	3:00 PM	4:00 PM	5:00 PM	6:00 PM
	!												
EDUCATIONAL CENTER:	,												
Class/Conference Attendees [2]	1					4*	7 Vehicles						
	i												
Visitors	!			20 Vehicles			20 Vehicles			20 Vehicles			
	+												
Growing Beds/Plant Labs [3]	'			9 V	icles			9 Vc					
	!	1											
Community Volunteer Center [4]	1			9 Velticles					Vehicles				
	i												
EQUESTRIAN:	!												
Equestrian Boarding [5]			14 Vehicles						4 Vehicles				
	i	;											
Other Equestrian Facilities [6]							Vehictes.						
Youth Canp	i			12 Vehic						nicles			
	!												
Therapeutic Riding Program				6 Vehicles									

[1] Source: City of Pasadena Parks and Natural Resources Division. This table reflects the arrival and departure patterns for all project components (i.e., existing and proposed) that are anticipated to generate parking demand at the Amex site for a special event scenario in which the site's land uses may be used concurrently or events may overlap. The information presented reflects condilions when the Annex is anticipated to be heavily utilized (i.e., June).
[2] Assumes an envirommenal conference/cvent of 100 attendees.
[3] Assumes two class sessions for large educational groups will be held
[4] Assumes volumeers are anticipated to arrive in two sessions.
[5] Assumes an increase in the mumber and usage of the equestrian boarding facilities (i.e., 36 horse boarding stalls will increase to a maximum of 70 horse boarding stalls)
[6] Assumes a horse show/special event of 200 attendees at the other equestrian facilities (i.e., public event area, riding ring, staging area, etc.).

Appendix B

Manual Traffic Counts

INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:	LLG-ENGINEERS
PROJECT:	HAHAMONGUA ANNEX-CITY OF LOS ANGELES
DATE:	WEDNESDAY, MAY 28, 2008
PERIOD:	O7:00 AM TO 09:00 AM
INTERSECTION:	N/S
	GOULD AVENUE
	EN
FILE NUMBER:	

15 MINUTE TOTALS	1	2	3	4	5	6	7	8	9	10	11	12
	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
700-715	14	15	79	55	68	10		4			104	23
715-730	16	17	91	51	66	12		4			113	20
730-745	20	25	134	90	121	25		7			169	37
745-800	39	20	114	145	142	26		11			127	34
800-815	43	18	107	116	143	14		15			109	43
815-830	35	15	80	75	115	10		12			110	33
830-845	27	23	63	44	93	15		7		1	75	27
845-900	22	18	70	49	99	12		10		10	83	19

gould avenue

CLIENT:		LLG - ENGINEERS
PROJECT:		HAHAMONGUA ANNEX - CITY OF LOS ANGELES
DATE:		WEDNESDAY, MAY 28, 2008
PERIOD:		04:00 PM TO 06:00 PM
INTERSECTION:	N/S	GOULD AVENUE
	ENW	FOOTHILL BOULEVARD
FILE NUMBER:		1-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT

$400-415$	5	15	73	75	125	19	2	10	5	19	108	88
$415-430$	23	13	75	87	131	19	3	12	2	15	120	103
$430-445$	24	18	83	75	137	18	4	12	3	17	123	90
$445-500$	22	15	74	78	115	24	3	10	2	21	130	90
$500-515$	14	12	71	96	162	24	3	13	5	16	128	106
$515-530$	27	22	91	70	134	24	5	15	6	13	125	83
$530-545$	22	18	80	71	132	24	5	14	3	17	109	84
$545-600$	18	19	75	62	142	18	7	9	4	19	100	77

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS

$400-500$	74	61	305	315	508	80	12	44	12	72	481	371
$415-515$	83	58	303	336	545	85	13	47	12	69	501	389
$430-530$	87	67	319	319	548	90	15	50	16	67	506	369
$445-545$	85	67	316	315	543	96	16	52	16	67	492	363
$500-600$	81	71	317	299	570	90	20	51	18	65	462	350
	2398											

CLIENT:	LLG-PASADENA
PROJECT:	HAHAMONGNA ANNEX-PASADENA
DATE:	SATURDAY, OCTOBER 11, 2008
PERIOD:	$\left.\begin{array}{ll}11: 00 \text { AM TO 02:00 PM } \\ \text { INTERSECTION: } & \text { N/S } \\ & \text { GOULD AVENUE } \\ & \text { EN } \\ \text { FOOTHILL BOULEVARD } \\ \text { FILE NUMBER: } & \\ & \\ & \end{array}\right]$ 1-MD

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
1100-1115	33	18	56	37	157	14		7		19	131	55
1115-1130	38	19	49	50	161	18		4		24	158	51
1130-1145	34	14	40	48	144	20		6		20	144	67
1145-1200	31	14	52	46	148	21		8		25	138	59
1200-1215	28	18	67	66	178	29		9		19	140	64
1215-1230	32	16	51	55	151	22		6		10	128	51
1230-1245	28	15	71	40	176	21		6		18	157	73
1245-0100	30	18	68	43	188	25		6		16	141	67
0100-0115	29	11	61	44	163	18		7		22	130	71
0115-0130	32	11	47	36	152	23		6		21	144	63
0130-0145	40	11	56	25	152	15		5		22	123	69
0145-0200	36	9	43	27	146	13		7		16	108	50

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
1100-1200	136	65	197	181	610	73	13	25	20	88	571	232	2211
1115-1215	131	65	208	210	631	88	14	27	17	88	580	241	2300
1130-1230	125	62	210	215	621	92	16	29	11	74	550	241	2246
1145-1245	119	63	241	207	653	93	17	29	12	72	563	247	2316
1200-0100	118	67	257	204	693	97	17	27	12	63	566	255	2376
1215-0115	119	60	251	182	678	86	13	25	12	66	556	262	2310
1230-0130	119	55	247	163	679	87	11	25	13	77	572	274	2322
1245-0145	131	51	232	148	655	81	13	24	10	81	538	270	2234
0100-0200	137	42	207	132	613	69	15	25	8	81	505	253	2087

gould avenue
THE TRAFFIC SOLUTION
329 DIAMOND STREET
ARCADIA, CALIFORNIA 91006
626.446.7978

CLIENT:		LLG - ENGINEERS
PROJECT:		HAHAMONGUA ANNEX - CITY OF LOS ANGELES
DATE:		WEDNESDAY, MAY 28, 2008
PERIOD:		07:00 AM TO 09:00 AM
INTERSECTION:	N/S	CROWN AVENUE / - 210 NB OFF-RAMP
	ENV	FOOTHILL BOULEVARD
FILE NUMBER:		2-AM

CROWN AVENUE / /-210 NB OFF-RAMP

CLIENT:		LLG - ENGINEERS
PROJECT:		HAHAMONGUA ANNEX - CITY OF LOS ANGELES
DATE:		WEDNESDAY, MAY 28, 2008
PERIOD:		04:00 PM TO 06:00 PM
INTERSECTION	N/S	CROWN AVENUE / I-210 NB OFF RAMP
	ENW	FOOTHILL BOULEVARD
FILE NUMBER:		2-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT

$400-415$	51	0	5	7	97	0	21	21	104	0	71	19
$415-430$	47	0	5	11	98	0	22	32	111	0	73	18
$430-445$	38	0	7	6	97	0	29	29	114	0	77	26
$445-500$	47	0	6	4	102	0	15	24	131	0	74	20
$500-515$	47	0	10	4	114	0	11	35	111	0	74	20
$515-530$	48	0	12	8	121	0	11	29	129	0	84	24
$530-545$	35	0	9	5	117	0	15	31	129	0	88	19
$545-600$	45	0	9	7	128	0	18	26	137	0	99	21

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS

$400-500$	183	0	23	28	394	0	87	106	460	0	295	83	1659
$415-515$	179	0	28	25	411	0	77	120	467	0	298	84	1689
$430-530$	180	0	35	22	434	0	66	117	485	0	309	90	1738
$445-545$	177	0	37	21	454	0	52	119	500	0	320	83	1763
$500-600$	175	0	40	24	480	0	55	121	506	0	345	84	1830

CROWN AVENUE / /-210 NB OFF RAMP

CLIENT:	LLG-PASADENA
PROJECT:	HAHAMONGNA ANNEX-PASADENA
DATE:	SATURDAY, OCTOBER 11, 2008
PERIOD:	11:00 AM TO 02:00 PM
INTERSECTION	N/S
	CROWN AVENUE /!-210 NB OFF RAMP
	FOOTHILL BOULEVARD

FILE NUMBER:
2-MD

CROWN AVENUE / I-210 NB OFF RAMP
THE TRAFFIC SOLUTION
329 DIAMOND STREET
ARCADIA, CALIFORNIA 91006
626.446.7978

INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:	LLG-ENGINEERS
PROJECT:	HAHAMONGUA ANNEX-CITY OF LOS ANGELES
DATE:	WEDNESDAY, MAY 28, 2008
PERIOD:	$07: 00$ AM TO 09:00 AM
INTERSECTION:	N/S
	1-210 SB ON - OFF RAMPS
	ENN
FILE NUMBERSSHIRE PLACE	

| 15 MINUTE
 TOTALS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
700-800	61	0	693	0	139	149		0		107	308		1457
715-815	67	0	695	0	147	158		0		127	339		1533
730-830	63	0	580	0	152	154		0		120	291		1360
745-845	59	0	398	0	127	119		0		100	172		975
800-900	54	0	300	0	88	101		0		79	118		

INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:	LLG - ENGINEERS
PROJECT:	HAHAMONGUA ANNEX - CITY OF LOS ANGELES
DATE:	WEDNESDAY, MAY 28,2008
PERIOD:	$04: 00$ PM TO 06:00 PM
INTERSECTION:	N/S
	1-210 SB ON - OFF RAMP
	EN
FILE NUMBERSHIRE PLACE	
	$3-$ PM

| 15 MINUTE
 TOTALS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12
	TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH
EBLT	TOTALS											

$400-500$	48	2	143	0	125	339	0	0	0	71	105	0	833
$415-515$	41	1	146	0	133	359	0	0	0	68	96	0	844
$430-530$	40	1	158	0	140	376	0	0	0	60	99	0	874
$445-545$	41	2	140	0	132	340	0	0	0	54	96	0	805
$500-600$	35	1	136	0	130	311	0	0	0	53	95	0	761

I- 210 SB ON - OFF RAMP

CLIENT:
PROJECT:
DATE:
PERIOD:
INTERSECTION:
N/S
EN

LLG - PASADENA
HAHAMONGNA ANNEX - PASADENA
SATURDAY, OCTOBER 11, 2008
11:00 AM TO 02:00 PM
I-210 SB ON-OFF RAMP
BERKSHIRE PLACE
3-MD

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
1100-1115	9	0	25	0	14	20		0		14	13	0
1115-1130	9	1	17	0	22	22		0		19	18	0
1130-1145	11	1	22	0	17	29		0		17	14	0
1145-1200	10	1	27	0	14	30		0		23	12	0
1200-1215	12	1	18	0	19	20		0		20	19	0
1215-1230	7	0	19	0	17	17		0		22	13	0
1230-1245	11	0	13	0	17	21		0		15	12	0
1245-0100	10	0	20	0	19	25		0		16	18	0
0100-0115	12	0	24	0	16	25		0		13	13	0
0115-0130	10	0	18	0	12	19		0		17	10	0
0130-0145	12	1	20	0	19	18		0		22	15	0
0145-0200	7	0	28	0	20	11		0		23	11	0

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS

[^2]THE TRAFFIC SOLUTION
329 DIAMOND STREET
ARCADIA, CALIFORNIA 91006
626.446.7978

CLIENT:	LLG-ENGINEERS
PROJECT:	HAHAMONGUA ANNEX-CITY OF LOS ANGELES
DATE:	WEDNESDAY, MAY 28,2008
PERIOD:	$07: 00$ AM TO 09:00 AM
INTERSECTION:	N/S
	1-210 NB ON - OFF RAMPS
	ENW
FILE NUMBERSHIRE PLACE	
	4AM

| 15 MINUTE
 TOTALS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
700-800		0		576	216	0	384	1	58		934	88	2257
715-815	0	0		605	222	0	363	0	71		941	114	2316
730-830	0	0		557	218	0	309	0	70		777	113	2044
745-845		0		351	170	0	268	0	68		485	95	1437
800-900	0	0		170	115	0	179		63		361	70	958

INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:		LLG - ENGINEERS
PROJECT:		HAHAMONGUA ANNEX - CITY OF LOS ANGELES
DATE:		WEDNESDAY, MAY 28, 2008
PERIOD:		04:00 PM TO 06:00 PM
INTERSECTION:	N/S	I-210 NB ON - OFF RAMP
	EN	BERKSHIRE PLACE
FILE NUMBER:		4-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT

$400-415$	0	0	0	89	86	0	10	0	14	0	33
$415-430$	0	0	0	100	73	0	17	0	20	0	39
$430-445$	0	0	0	131	100	0	29	1	31	0	58
$445-500$	0	0	0	118	99	0	28	0	29	0	42
$500-515$	0	0	0	86	93	0	38	0	22	0	32
$515-530$	0	0	0	115	98	0	20	2	31	0	43
$530-545$	0	0	0	157	80	0	22	1	30	0	44
$545-600$	0	0	0	151	74	0	34	0	29	0	40

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
$\begin{array}{lllllllllllllll}400-500 & 0 & 0 & 0 & 438 & 358 & 0 & 84 & 1\end{array}$													
415-515		0		435	365		112	1	102		171	61	1247
430-530		0		450	390		115		113		175	71	1317
445-545		0		476	370		108	3	112		161	83	1313
500-600		0		509	345		114	3	112		159	81	1323
P.M. PEAK HOUR 0500-0600													
			81							509			
BERKSHIRE PLACE \longrightarrow													
										0			
					112		114						

INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:	LLG-PASADENA
PROJECT:	HAHAMONGNA ANNEX-PASADENA
DATE:	SATURDAY, OCTOBER 11, 2008
PERIOD:	
INTERSECTION:	N/S
	I-210 AM TO O2:00 PM OFF RAMP
	EN
	BERKSHIRE PLACE

FILE NUMBER:
4MD

15 MINUTE TOTALS	1		2		3		4	5	6		7	8	9	10		11	12
	SBRT		SBTH		SBLT		WBRT	WBTH	WBLT		NBRT	NBTH	NBLT	EBRT		EBTH	EBLT
1100-1115		0		0		0	28	22		0	12	1	8		0	25	9
1115-1130		0		0		0	41	35		0	19	0	14		0	23	15
1130-1145		0		0		0	31	31		0	27	1	13		0	26	11
1145-1200		0		0		0	29	34		0	20	1	13		0	24	13
1200-1215		0		0		0	24	21		0	11	0	18		0	20	16
1215-1230		0		0		0	29	17		0	12	1	18		0	19	13
1230-1245		0		0		0	32	22		0	13	2	16		0	15	10
1245-0100		0		0		0	25	28		0	16	0	19		0	22	15
0100-0115		0		0		0	22	25		0	19	1	17		0	26	10
0115-0130		0		0		0	22	18		0	21	0	12		0	21	9
0130-0145		0		0		0	28	23		0	17	0	17		0	20	13
0145-0200		0		0		0	21	18		0	12	0	14		0	29	16

THE TRAFFIC SOLUTION
329 DIAMOND STREET
ARCADIA, CALIFORNIA 91006
626.446.7978

INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:	LLG-ENGINEERS
PROJECT:	HAHAMONGUA ANNEX-CITY OF LOS ANGELES
DATE:	WEDNESDAY, MAY 28, 2008
PERIOD:	O7:00 AM TO 09:00 AM
INTERSECTION:	N/S
	OAK GROVE DRIVE
	ENV
FOOTHILL BOULEVARD	
FILE NUMBER:	
	5-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
700-715		13		1	1	0	3	208	21	54	0	38
715-730		10		4	3	4	2	191	26	98	2	24
730-745		23		8	29	28	6	178	51	194	6	26
745-800		10		5	26	32	14	197	69	177	13	68
800-815		19		2	3	2	5	165	34	80	3	33
815-830		12		2	2	2	7	163	46	72	5	64
830-845		19		1	3	2	5	107	29	56	3	43
845-900		17		1	2	1	9	117	33	25	2	37

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS

$700-800$	20	56	3	18	59	64	25	774	167	523	21	156
$715-815$	22	62	5	19	61	66	27	731	180	549	24	151
$730-830$	23	64	4	17	60	64	32	703	200	523	27	1897
$745-845$	25	60	6	10	34	38	31	632	178	385	24	208
$800-900$	24	67	4	6	10	7	26	552	142	233	13	177

OAK GROVE DRIVE

INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:	LLG-ENGINEERS
PROJECT:	HAHAMONGUA ANNEX-CITY OF LOS ANGELES
DATE:	WEDNESDAY, MAY 28,2008
PERIOD:	O4:00 PM TO 06:00 PM
INTERSECTION:	N/S
	OAK GROVE DRIVE
	EMW
FOOTHILL BOULEVARD	
FILE NUMBER:	

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
400-415	32	124		1	2		6	22	59	52		10
415-430	42	150		2	3	8	5	18	62	52		10
430-445	42	179			4		10	24	44	57		9
445-500	60	198		2	7		12	23	53	61		9
500-515	42	152		1	3		13	20	50	69		9
515-530	56	198		0	1		19	10	78	45		6
530-545	53	199		1	3		13	17	88	53		6
545-600	44	187		0	7		7	14	63	68		6

OAK GROVE DRIVE

INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:	LLG-PASADENA
PROJECT:	HAHAMONGNA ANNEX-PASADENA
DATE:	SATURDAY, OCTOBER 11, 2008
PERIOD:	11:00 AM TO 02:00 PM
INTERSECTION:	N/S
	OAK GROVE DRIVE
	EN
FILE NUMBER:	
	5-MD

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
1100-1115	8	7		0	6	7	9	8	38	44	8	5
1115-1130	7	12		0	8	11	10	11	32	41	5	3
1130-1145	4	14		0	3	12	11	14	39	52	3	5
1145-1200	5	15		0	4	11	9	11	37	65	3	5
1200-1215	11	11		0	6	13	6	8	35	41	2	10
1215-1230	7	8		0	7	8	6	9	39	35	4	11
1230-1245	9	10		0	7	13	3	10	30	39	5	8
1245-0100	5	10		1	5	7	5	10	29	28	7	5
0100-0115	6	7		1	8	10	7	15	32	34	4	4
0115-0130	9	14		1	4	16	5	14	37	26	5	3
0130-0145	5	10		0	6	12	5	17	27	38	7	2
0145-0200	3	11		0	3	9	3	10	37	40	3	2

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12
	TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH

OAK GROVE DRIVE
THE TRAFFIC SOLUTION
329 DIAMOND STREET
ARCADIA, CALIFORNIA 91006
626.446.7978

INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:	LLG-ENGINEERS
PROJECT:	HAHAMONGUA ANNEX-CITY OF LOS ANGELES
DATE:	WEDNESDAY, MAY 28,2008
PERIOD:	O7:00 AM TO O9:00 AM
INTERSECTION:	N/S
	OAK GROVE DRIVE
	EN
FILE NUMBER:	
	GERKSHIRE PLACE

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
700-715	78	15		0	0	0		48	7	10		243
715-730	85	22		0	0	0		60	20	21		284
730-745	261	41		0	0	0		79	32	24		367
745-800	290	59		0	0	0		105	48	27		309
800-815	64	41		0	0	0		55	43	24		221
815-830	50	31		0	0	0		54	29	23		113
830-845	37	33		0	0	0		34	16	14		71
845-900	46	29		0	0	0		29	15	16		69

OAK GROVE DRIVE

INTERSECTION TURNING MOVEMENT COUNT SUMMARY

OAK GROVE DRIVE

THE TRAFFIC SOLUTION
329 DIAMOND STREET
ARCADIA, CALIFORNIA 91006
626.446.7978

CLIENT:
project:
DATE:
PERIOD:
INTERSECTION: N/S OAK GROVE DRIVE
FILE NUMBER:

EN BERKSHIRE PLACE
LLG - PASADENA
HAHAMONGNA ANNEX - PASADENA
SATURDAY, OCTOBER 11, 2008
11:00 AM TO 02:00 PM

6-MD

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT

$1100-1115$	40	28	0	0	0	0	0	27	18	15	0	27
$1115-1130$	54	29	0	0	0	0	0	34	19	15	0	24
$1130-1145$	41	39	0	0	0	0	0	33	22	17	0	37
$1145-1200$	48	42	0	0	0	0	0	36	17	17	0	27
$1200-1215$	39	31	0	0	0	0	0	31	12	13	0	21
$1215-1230$	35	32	0	0	0	0	0	33	16	13	0	23
$1230-1245$	44	31	0	0	0	0	0	24	13	12	0	18
$1245-0100$	38	30	0	0	0	0	0	27	14	13	0	22
$0100-0115$	35	31	0	0	0	0	0	28	16	16	0	29
$0115-0130$	27	31	0	0	0	0	0	27	18	14	0	23
$0130-0145$	27	31	0	0	0	0	0	28	23	10	0	25
$0145-0200$	21	32	0	0	0	0	0	27	18	18	0	27

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS

oak grove drive
THE TRAFFIC SOLUTION
329 DIAMOND STREET
ARCADIA, CALIFORNIA 91006
626.446.7978

INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:	LLG-ENGINEERS
PROJECT:	HAHAMONGUA ANNEX-CITY OF LOS ANGELES
DATE:	WEDNESDAY, MAY 28, 2008
PERIOD:	07:00 AM TO 09:00 AM
INTERSECTION:	N/S
	OAK GROVE DRIVE
	ENV
LINDA VISTA AVENUE	
FILE NUMBER:	
	7-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
700-715	6	17		0	0	0		43	19	8		7
715-730	8	27		0	0	0		59	33	14		26
730-745	19	39		0	0	0		75	62	30		49
745-800	32	36		0	0	0		101	32	33		33
800-815	21	40		0	0	0		65	22	19		24
815-830	24	30		0	0	0		61	24	15		18
830-845	20	25		0	0	0		44	23	12		7
845-900	15	21		0	0	0		59	39	11		11

OAK GROVE DRIVE

INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:	LLG-ENGINEERS
PROJECT:	HAHAMONGUA ANNEX-CITY OF LOS ANGELES
DATE:	WEDNESDAY, MAY 28, 2008
PERIOD:	04:00 PM TO 06:00 PM
INTERSECTION	N/S
	OAK GROVE DRIVE
	EN
FILE LINDA VISTA AVENUE	
	7-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
400-415	10	42		0	0	0	0	40	11	18	0	17
415-430	18	60		0	0	0	0	41	12	10	0	13
430-445	20	52		0	0	0	0	34	11	18	0	15
445-500	22	57		0	0	0	0	35	16	19	0	13
500-515	21	61		0	0	0	0	46	15	19	0	15
515-530	19	72		0	0	0	0	37	11	15	0	25
530-545	15	65		0	0	0	0	36	14	20	0	18
545-600	21	50		0	0	0	0	29	12	15	0	11

OAK GROVE DRIVE

THE TRAFFIC SOLUTION
329 DIAMOND STREET
ARCADIA, CALIFORNIA 91006
626.446.7978

INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:
PROJECT
DATE:
PERIOD:
INTERSECTION
N/S

FILE NUMBER:

EN OAK GROVE DRIVE
LLG - PASADENA
HAHAMONGNA ANNEX - PASADENA
SATURDAY, OCTOBER 11, 2008
11:00 AM TO 02:00 PM
LINDA VISTA AVENUE

7-MD

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT

$1100-1115$	0	0	0	0	37	9	14	0	9	14	24	0
$1115-1130$	0	0	0	0	33	10	11	0	12	15	30	0
$1130-1145$	0	0	0	0	31	12	9	0	19	17	40	0
$1145-1200$	0	0	0	0	32	13	11	0	17	19	42	0
$1200-1215$	0	0	0	0	27	10	10	0	18	14	28	0
$1215-1230$	0	0	0	0	22	10	6	0	20	19	30	0
$1230-1245$	0	0	0	0	16	14	6	0	19	12	29	0
$1245-0100$	0	0	0	0	22	12	10	0	19	10	37	0
$0100-0115$	0	0	0	0	22	11	10	0	16	18	22	0
$0115-0130$	0	0	0	0	28	9	7	0	13	17	35	0
$0130-0145$	0	0	0	0	35	15	6	0	18	14	27	0
$0145-0200$	0	0	0	0	29	12	5	0	12	18	36	0

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12
	TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH
EBLT	TOTALS											

LINDA VISTA AVENUE

THE TRAFFIC SOLUTION
329 DIAMOND STREET
ARCADIA, CALIFORNIA 91006
626.446.7978

INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:	LLG-ENGINEERS
PROJECT:	HAHAMONGUA ANNEX-CITY OF LOS ANGELES
DATE:	WEDNESDAY, MAY 28, 2008
PERIOD:	07:00 AM TO 09:00 AM
INTERSECTION:	N/S
	HIGHLAND DRIVE
	ENN
FILE NUMBER:	
	$8-A M$

CLIENT:	LLG-ENGINEERS
PROJECT:	HAHAMONGUA ANNEX-CITY OF LOS ANGELES
DATE:	WEDNESDAY, MAY 28, 2008
PERIOD:	04:00 PM TO 06:00 PM
INTERSECTION:	N/S
	HIGHLAND DRIVE
	ENN
FILE LINDA VISTA AVENUE	
	$8-P M$

15 MINUTE TOTALS	1	2	3	4	5	6	7	8	9	10	11	12
	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
400-415		10	9	8	0	14	21	13				0
415-430		12	7	8	0	23	17	11				0
430-445		9	14	8	0	24	21	9				0
445-500		8	10	11	0	28	18	13				0
500-515		13	15	11	0	23	20	12				0
515-530		15	10	10	0	19	31	15				0
530-545		13	12	11	0	20	25	13				0
545-600		18	6	9	0	23	19	13				0

HIGHLAND DRIVE

THE TRAFFIC SOLUTION
329 DIAMOND STREET

INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:
PROJECT:
DATE:
PERIOD:
$\begin{array}{lll}\text { INTERSECTION. } & \text { N/S } & \text { LINDA VISTA AVENUE } \\ & \text { EN } & \text { HIGHLAND DRIVE }\end{array}$
FILE NUMBER:

LLG - PASADENA
HAHAMONGNA ANNEX - PASADENA
SATURDAY, OCTOBER 11, 2008
11:00 AM TO 02:00 PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT

$1100-1115$	10	0	13	14	9	0	0	0	0	0	9
$1115-1130$	9	0	14	15	10	0	0	0	0	0	8
$1130-1145$	11	0	16	14	7	0	0	0	0	0	7
$1145-1200$	9	0	21	17	6	0	0	0	0	0	6
$1200-1215$	9	0	15	16	7	0	0	0	0	0	9
$1215-1230$	10	0	16	17	7	0	0	0	0	0	6
$1230-1245$	9	0	15	15	7	0	0	0	0	0	5
$1245-0100$	8	0	13	18	10	0	0	0	0	0	7
$0100-0115$	12	0	17	16	9	0	0	0	0	0	8
$0115-0130$	9	0	14	15	5	0	0	0	0	0	6
$0130-0145$	11	0	17	14	10	0	0	0	0	0	4
$0145-0200$	12	0	17	10	8	0	0	0	0	0	7

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS

THE TRAFFIC SOLUTION
329 DIAMOND STREET
ARCADIA, CALIFORNIA 91006
626.446.7978

```
                            << ACCUTEK >>
                            <<21114 TRIGGER LANE >>
                            << DIAMOND BAR, CA 91765>>
<< (909) 595-6199 FAX: (909) 595-6022 >
File Name : 347101
Site Code : 00347101 Start Date : 09/29/2004 Page N

Groups Printed- Turning Movement
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{WINDSOR AVE. Southbound} & \multicolumn{4}{|c|}{WOODBURY ROAD Westbound} & \multicolumn{4}{|c|}{WINDSOR AVE. Northbound} & \multicolumn{5}{|c|}{WOODBURY ROAD Eastbound} \\
\hline Start Time & Right & Thru & Left & App.
Total & Rlght & Thru & Left & App. Total & Right & Thru & Left & App. Total & Right & Thru & Left & App. Total & \[
\begin{gathered}
\text { Int. } \\
\text { Total }
\end{gathered}
\] \\
\hline Factor : & \(1.0^{\text {i }}\) & 1.0 & 1.0 & & 1.0 & 1.0 & 1.0 & & 1.0 & 1.0 & 1.0 & & 1.0 & 1.0 & 1.0 & & \\
\hline 07:00 AM & 5 & 101 & 3 & 109 & 3 & 21 & 126 & 150 & 82 & 88 & 19 & 189 & 6 & 19 & 2 & 27 & 475 \\
\hline 07:15 AM & 5 & 164 & 7 & 176 & 5 & 49 & 126 & 180 & 90 & 124 & 27 & 241 & 11 & 20 & 2 & 33 & 630 \\
\hline \(\rightarrow 07: 30 \mathrm{AM}\) & 5 & 188 & 7 & 200 & 14 & 80 & 117 & 211 & 96 & 144 & 51 & 291 & 14 & 29 & 6 & 49 & 751 \\
\hline 07:45 AM & 3 & 195 & 17 & 215 & 19 & 122 & 140 & 281 & 148 & 137 & 32 & 317 & 26 & 32 & 5 & 63 & 876 \\
\hline Total & 18 & 648 & 34 & 700 & 41 & 272 & 509 & 822 & 416 & 493 & 129 & 1038 & 57 & 100 & 15 & 172 & 2732 \\
\hline 08:00 AM & 2 & 145 & 6 & 153 & 9 & 67 & 134 & 210 & 132 & 177 & 18 & 327 & 9 & 24 & 8 & 41 & 731 \\
\hline 08:15 AM & 10 & 130 & 5 & 145 & 6 & 49 & 133 & 188 & 145 & 170 & 14 & 329 & 6 & 23 & 11 & 40 & 702 \\
\hline 08:30 AM & 10 & 108 & 7 & 125 & 8 & 49 & 100 & 157 & 110 & 185 & 9 & 304 & 2 & 23 & 12 & 37 & 623 \\
\hline 08:45 AM & 6 & 104 & 6 & 116 & 8 & 43 & 107 & 158 & 87 & 188 & 4 & 279 & 6 & 36 & 8 & 50 & 603 \\
\hline Total & 28 & 487 & 24 & 539 & 31 & 208 & 474 & 713 & 474 & 720 & 45 & 1239 , & 23 & 106 & 39 & 168 & 2659 \\
\hline
\end{tabular}
*** BREAK ***


Peak Hour From 04:00 PM to 05:45 PM - Peak 1 of 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Intersection & 05:00 & PM 4 & -5 & Pr & & & & & & & & & & & & & \\
\hline Volume & 26 & 583 & 65 & 674 & 37 & 121 & 378 & 536 & 509 & 507 & 47 & 10631 & 43 & 246 & 56 & 345 & 2618 \\
\hline Percent & 3.9 & 86.5 & 9.6 & & 6.9 & 22.6 & 70.5 & & 47.9 & 47.7 & 4.4 & & 12.5 & 71.3 & 16.2 & & \\
\hline 05:00 & 6 & 169 & 13 & 188 & 11 & 26 & 120 & 157 & 130 & 137 & 6 & 273 & 13 & 77 & 10 & 100 & 718 \\
\hline \begin{tabular}{l}
volume \\
Peak Factor
\end{tabular} & & & & & & & & & & & & & & & & & 0.912 \\
\hline High Int: & 05:15 & & & & 05:00 & & & & 05:15 & & & & 05:00 & & & & \\
\hline Volume & 5 & 161 & 25 & 191 & 11 & 26 & 120 & 157 & 138 & 125 & 15 & 278 & 13 & 77 & 10 & \(100{ }^{\text { }}\) & \\
\hline Peak Factor & & & & 0.882 & & & & 0.854 & & & & 0.956 : & & & & 0.863 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline CLIENT: & & LLG - PASADENA \\
\hline PROJECT: & & HAHAMONGNA ANNEX - PASADENA \\
\hline DATE: & & SATURDAY, OCTOBER 11, 2008 \\
\hline PERIOD: & & 11:00 AM TO 02:00 PM \\
\hline INTERSECTION: & N/S & ARROYO BOULEVARD / WINDSOR AVENUE \\
\hline & EM & OAK GROVE DRIVE \\
\hline FILE NUMBER: & & 9-MD \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 15 MINUTE & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline TOTALS & SBRT & SBTH & SBLT & WBRT & WBTH & WBLT & NBRT & NBTH & NBLT & EBRT & EBTH & EBLT \\
\hline 1100-1115 & & 81 & & 12 & 35 & 99 & 69 & 66 & 4 & 5 & 22 & 7 \\
\hline 1115-1130 & & 60 & & 10 & 25 & 83 & 61 & 51 & 8 & 7 & 27 & 6 \\
\hline 1130-1145 & 7 & 81 & & 10 & 29 & 99 & 82 & 74 & 6 & 9 & 29 & 9 \\
\hline 1145-1200 & 8 & 85 & & 7 & 25 & 72 & 70 & 72 & 10 & 5 & 29 & 13 \\
\hline 1200-1215 & & 66 & & 5 & 23 & 78 & 55 & 62 & 10 & 5 & 24 & 8 \\
\hline 1215-1230 & 6 & 93 & & 10 & 20 & 86 & 69 & 74 & 12 & 9 & 23 & 5 \\
\hline 1230-1245 & 4 & 99 & & 10 & 16 & 86 & 85 & 89 & 10 & 7 & 21 & 6 \\
\hline 1245-0100 & 7 & 63 & & 11 & 15 & 80 & 78 & 96 & 9 & 10 & 26 & 5 \\
\hline 0100-0115 & 5 & 64 & & 7 & 21 & 72 & 91 & 81 & 10 & 8 & 21 & 6 \\
\hline 0115-0130 & 5 & 84 & & 10 & 27 & 91 & 81 & 82 & 11 & 7 & 27 & 5 \\
\hline 0130-0145 & 7 & 75 & & 11 & 30 & 108 & 74 & 62 & 11 & 4 & 20 & 9 \\
\hline 0145-0200 & 6 & 76 & & 12 & 25 & 88 & 77 & 70 & 11 & 4 & 16 & 10 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 HOUR & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & \\
\hline TOTALS & SBRT & SBTH & SBLT & WBRT & WBTH & WBLT & NBRT & NBTH & NBLT & EBRT & EBTH & EBLT & TOTALS \\
\hline
\end{tabular}


ARROYO BOULEVARD / WINDSOR AVENUE
THE TRAFFIC SOLUTION
329 DIAMOND STREET
ARCADIA, CALIFORNIA 91006
626.446.7978

\section*{Appendix C}

Proposed Project Analysis Data:
iCU and Levels of Service Explanation ICU Data Worksheets-Weekday AM and PM Peak Hours and Weekend Mid-Day Peak Hour

\section*{INTERSECTION CAPACITY UTILIZATION (ICU) DESCRIPTION}

Level of Service is a term used to describe prevailing conditions and their effect on traffic. Broadly interpreted, the Levels of Service concept denotes any one of a number of differing combinations of operating conditions which may occur as a roadway is accommodating various traffic volumes. Level of Service is a qualitative measure of the effect of such factors as travel speed, travel time, traffic interruptions, freedom to maneuver, safety, driving comfort and convenience.

Six Levels of Service, A through F, have been defined in the 1965 Highway Capacity Manual, published by the Transportation Research Board. Level of Service A describes a condition of free flow, with low traffic volumes and relatively high speeds, while Level of Service F describes forced traffic flow at low speeds with jammed conditions and queues which cannot clear during the green phases.

The Intersection Capacity Utilization (ICU) method of intersection capacity analysis has been used in our studies. It directly relates traffic demand and available capacity for key intersection movements, regardless of present signal timing, The capacity per hour of green time for each approach is calculated based on the methods of the Highway Capacity Manual. The proportion of total signal time needed by each key movement is determined and compared to the total time available (100 percent of the hour). The result of summing the requirements of the conflicting key movements plus an allowance for clearance times is expressed as a decimal fraction. Conflicting key traffic movements are those opposing movements whose combined green time requirements are greatest.

The resulting ICU represents the proportion of the total hour required to accommodate intersection demand volumes if the key conflicting traffic movements are operating at capacity. Other movements may be operating near capacity, or may be operating at significantly better levels. The ICU may be translated to a Level of Service as tabulated below.

The Levels of Service (abbreviated from the Highway Capacity Manual) are listed here with their corresponding ICU and Load Factor equivalents. Load Factor is that proportion of the signal cycles during the peak hour which are fully loaded; i.e. when all of the vehicles waiting at the beginning of green are not able to clear on that green phase.

Intersection Capacity Utilization Characteristics
\begin{tabular}{ccc}
\hline Level of Service & Load Factor & Equivalent ICU \\
\hline A & 0.0 & \(0.00-0.60\) \\
B & \(0.0-0.1\) & \(0.61-0.70\) \\
C & \(0.1-0.3\) & \(0.71-0.80\) \\
D & \(0.3-0.7\) & \(0.81-0.90\) \\
E & \(0.7-1.0\) & \(0.91-1.00\) \\
F & Not Applicable & Not Applicable \\
\hline
\end{tabular}

\section*{SERVICE LEVEL A}

There are no loaded cycles and few are even close to loaded at this service level. No approach phase is fully utilized by traffic and no vehicle waits longer than one red indication.

\section*{SERVICE LEVEL B}

This level represents stable operation where an occasional approach phase is fully utilized and a substantial number are approaching full use. Many drivers begin to feel restricted within platoons of vehicles.

\section*{SERVICE LEVEL C}

At this level stable operation continues. Loading is still intermittent but more frequent than at Level B. Occasionally drivers may have to wait through more than one red signal indication and backups may develop behind turning vehicles. Most drivers feel somewhat restricted, but not objectionably so.

\section*{SERVICE LEVEL D}

This level encompasses a zone of increasing restriction approaching instability at the intersection. Delays to approaching vehicles may be substantial during short peaks within the peak hour, but enough cycles with lower demand occur to permit periodic clearance of queues, thus preventing excessive backups. Drivers frequently have to wait through more than one red signal. This level is the lower limit of acceptable operation to most drivers.

\section*{SERVICE LEVEL E}

This represents near capacity and capacity operation. At capacity ( \(I C U=1.0\) ) it represents the most vehicles that the particular intersection can accommodate. However, full utilization of every signal cycle is seldom attained no matter how great the demand. At this level all drivers wait through more than one red signal, and frequently through several.

\section*{SERVICE LEVEL F}

Jammed conditions. Traffic backed up from a downstream location on one the street restricts or prevents movement of traffic through the intersection under consideration.
\begin{tabular}{lll} 
& & Gould Avenue @ Foothill Boulevard \\
N-S St: & Gould Avenue & Peak hr: \\
E-W St: & Foothill Boulevard & Annual Growth: \\
Project: & HWP Annex Project/-083745-1 & \\
File: & ICU1 &
\end{tabular}

Date:
Date of

2009 EXIST. TRAFFIC
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{2009 EXIST. TRAFFIC} & \multicolumn{3}{|l|}{2014 W/AMBIENT GROWTH} & \multicolumn{4}{|l|}{2014 W/RELATED PROJECTS} & \multicolumn{4}{|l|}{2014 W/PROJECT SITE TRAFFIC} & \multicolumn{4}{|l|}{2014 W/PROJECT MITIGATION} \\
\hline Movement & Volume & \begin{tabular}{l}
\[
2
\] \\
Capacity
\end{tabular} & \begin{tabular}{l}
VIC \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \begin{tabular}{l}
VIC \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \begin{tabular}{l}
\[
2
\] \\
Capacity
\end{tabular} & \begin{tabular}{l}
VIC \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \begin{tabular}{l}
2 \\
Capacity
\end{tabular} & \begin{tabular}{l}
V/C \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \[
\text { Capacity }{ }^{2}
\] & \begin{tabular}{l}
V/C \\
Ratio
\end{tabular} \\
\hline Nb Left & 8 & 0 & 0.005 & 1 & 9 & 0.005 & 0 & 9 & 0 & 0.005 & 0 & 9 & 0 & 0.005 & 0 & 9 & 0 & 0.005 \\
\hline Nb Thru [3] & 46 & 1700 & 0.037 * & 3 & 49 & 0.040* & 0 & 49 & 1700 & 0.040 * & 0 & 49 & 1700 & 0.040 * & 0 & 49 & 1700 & 0.040 * \\
\hline Nb Right & 9 & 0 & - & 1 & 10 & - & 0 & 10 & 0 & - & 0 & 10 & 0 & - & 0 & 10 & 0 & - \\
\hline Sb Left & 442 & 0 & 0.130 & 33 & 475 & 0.140 & 0 & 475 & 0 & 0.140 & 21 & 496 & 0 & 0.146 & 0 & 496 & 0 & 0.146 \\
\hline Sb Thru [3] & 79 & 3400 & 0.153 * & 6 & 85 & 0.165 * & 0 & 85 & 3400 & 0.165 * & 0 & 85 & 3400 & 0.171 * & 0 & 85 & 3400 & 0.171 * \\
\hline Sb Right & 139 & 1700 & 0.082 & 10 & 149 & 0.088 & 0 & 149 & 1700 & 0.088 & 0 & 149 & 1700 & 0.088 & 0 & 149 & 1700 & 0.088 \\
\hline Eb Left & 149 & 1700 & 0.088* & 11 & 160 & 0.094 * & 0 & 160 & 1700 & 0.094 * & 0 & 160 & 1700 & 0.094 * & 0 & 160 & 1700 & 0.094 * \\
\hline Eb Thru & 523 & 3400 & 0.162 & 39 & 562 & 0.174 & 4 & 566 & 3400 & 0.175 & 8 & 574 & 3400 & 0.177 & 0 & 574 & 3400 & 0.177 \\
\hline Eb Right & 27 & 0 & - & 2 & 29 & - & 0 & 29 & 0 & - & 0 & 29 & 0 & - & 0 & 29 & 0 & - \\
\hline Wb Left & 76 & 1700 & 0.045 & 6 & 82 & 0.048 & 0 & 82 & 1700 & 0.048 & 0 & 82 & 1700 & 0.048 & 0 & 82 & 1700 & 0.048 \\
\hline Wb Thru & 529 & 3400 & 0.156 & 40 & 568 & 0.167 & 5 & 573 & 3400 & 0.169 & 0 & 573 & 3400 & 0.169 & 0 & 573 & 3400 & 0.169 \\
\hline Wo Right & 432 & 1700 & 0.254 * & 32 & 465 & 0.273 * & 0 & 465 & 1700 & 0.273 * & 0 & 465 & 1700 & 0.273 * & 0 & 465 & 1700 & 0.273 * \\
\hline Yellow Allow & ance: & & \(0.100^{*}\) & \multicolumn{3}{|r|}{\(0.100^{*}\)} & \multicolumn{4}{|r|}{0.100 *} & \multicolumn{4}{|r|}{0.100 *} & & & & \(0.100^{*}\) \\
\hline ICU & & & \multirow[t]{2}{*}{0.632} & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{B 0.672}} & \multicolumn{4}{|r|}{\multirow[t]{2}{*}{B \({ }^{0.672}\)}} & \multicolumn{4}{|r|}{\multirow[t]{2}{*}{B 0.678}} & \multicolumn{4}{|r|}{\multirow[t]{2}{*}{\(B^{0.678}\)}} \\
\hline LOS & & B & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

2 Capacity expressed in veh/hour of green
3 Northbound and southbound approaches operate with spilit signal phasing.
Note: Year 2008 manual traffic counts were adjusted by a 1.5 percent ( \(1.5 \%\) ) ambient growth factor to reflect year 2009 existing condifions.

LINSCOTT, LAW \& GREENSPAN, ENGINEERS
236 N. Chester Avenue, Suite 200, Pasadena CA 91106
(626) 796.2322 Fax (626) 792.0941
\begin{tabular}{ll} 
N-S St: & Gould Avenue \\
E-W St: & Foothill Boulevard \\
Project: & HWP Annex Project/1-083745-1 \\
File: & ICU1
\end{tabular}

File: ICU1

\section*{INTERSECTION CAPACITY UTILIZATION}
Gould Avenue @ Foothil Boulevard
Peak hr: PM
Annual Growth: \(\quad 1.50 \%\)

*Key conflicting movement as a part of ICu
1 Counts conducted by: The Traffic Solution
2 Capacity expressed in veh/hour of green
3 Northbound and southbound approaches operate with split signal phasing
Note: Year 2008 manual traffic counts were adjusted by a 1.5 percent (1.5\%) ambient growth factor to reflect year 2009 existing conditions.

\section*{INSCOTT, LAW \& GREENSPAN, ENGINEERS}

236 N. Chester Avenue, Suite 200, Pasadena CA 91106
626) 796.2322 Fax (626) 792.0941

\section*{INTERSECTION CAPACITY UTILIZATION}

E-W St: Foothill Boulevard
Project: HWP Annex Project1-083745-1
ICU1

Gould Avenue @ Foothill Boulevard
Feak hr: \(\quad\) Weekend Mid-d
Annual Growth: \(\quad 1.50 \%\)

Date
Date of Count:
Projection Year:

*Key conflicting movement as a part of \(I C U\)
1 Counts conducted by: The Traffic Solution
2 Capacity expressed in veh/hour of green
3 Northbound and southbound approaches operate with split signal phasing
Note: Year 2004 manual traffic counts were adjusted by a 1.5 percent (1.5\%) ambient growth factor to reflect year 2009 existing conditions.

LINSCOTT, LAW \& GREENSPAN, ENGINEERS
236 N. Chester Avenue, Suite 200, Pasadena CA 91106
626) 796.2322 Fax (626) 792.0941

\section*{INTERSECTION CAPACITY UTILIZATION}

Crown Avenue-I-210 Freeway NB Off Ramp @ Foothill Boulevard
Peak hr:
\(\begin{array}{ll}\text { Peak hr: } & \text { AM } \\ \text { Annual Growth: } & 1.50 \%\end{array}\)

Date:
Date of Count:
Projection Year:

E-W St: Foothill Boulevard
Project
File: ICU2

Annex Project/1-083745-1
\begin{tabular}{|cccc|r|r|}
\hline \multicolumn{4}{c|}{2009} & EXIST. TRAFFIC & 2 \\
& 1 & \multicolumn{2}{c|}{2} & VIC & Add \\
Movement & Volume & Capacity & Ratio & Volu \\
\hline
\end{tabular}
\begin{tabular}{lrrrr|r} 
& & Colume & Capacity & Ratio & Volu \\
\hline & & & & \\
Nb Left & 373 & 0 & 0.110 &
\end{tabular}
\begin{tabular}{lrrr} 
Nb Left & 373 & 0 & 0.110 \\
Nb Thru [3] & 251 & 3400 & \(0.183 *\) \\
Nb Right & 225 & 1700 & 0.133 \\
& & & \\
Sb Left & 93 & 0 & 0.055 \\
Sb Thru [3] & 0 & 1700 & \(0.149 *\) \\
Sb Right & 160 & 0 & - \\
& & & \\
Eb Left & 47 & 1700 & 0.027 \\
Eb Thru & 631 & 3400 & \(0.186 *\) \\
Eb Right & 0 & 0 & - \\
& & 0 & \\
Wb Left & 0 & 0 & \(0.000 *\) \\
Wb Thru & 353 & 3400 & 0.116 \\
Wb Right & 43 & 0 & -
\end{tabular}
\begin{tabular}{|ccc|ccc|c|}
\hline \multicolumn{2}{|c|}{2014} & W/AMBIENT & GROWTH & \multicolumn{3}{|c|}{ 2014 } \\
AdRELATED PROJEGTS & & 201 \\
Added & Total & VIC & Added & Total & 2 & VIC
\end{tabular}
\begin{tabular}{l|l} 
Ratio & Volume \\
\hline &
\end{tabular}

LINSCOTT, LAW \& GREENSPAN, ENGINEERS
236 N. Chester Avenue, Suite 200, Pasadena CA 91106
626) 796.2322 Fax (626) 792.0941
\begin{tabular}{ll} 
N-S St: & Crown Avenue-I-210 Freeway NB Off Ramp \\
E-W St: & Foothill Boulevard \\
Project: & HWP Annex Project \(/ 1-083745-1\)
\end{tabular}
\(\begin{array}{ll}\text { Project: } \\ \text { File: } & \text { ICUP } \\ \end{array}\)

\section*{INTERSECTION CAPACITY UTILIZATION}

Crown Avenue-I-210 Freeway NB Off Ramp @ Foothill Boulevard
Peak hr: PM

Annual Growth: \(\quad 1.50 \%\)

Date:
Date of Count:
Projection Year

03/11/2009 2009
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 2009 & EXIST. TRAFF & & 2014 & WIAMBIEN & IT GROWTH & 2014 & W/RELATE & ED PROJE & CTS & 2014 & W/PROJEC & CT SITE TR & RAFFIC & 2014 & WIPROJEC & T MITIGAT & ON & \\
\hline Movement & \begin{tabular}{l}
\[
1
\] \\
Volume
\end{tabular} & Capacity \({ }^{2}\) & \begin{tabular}{l}
V/c \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \begin{tabular}{l}
VIC \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & Capacity & \begin{tabular}{l}
V/C \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \begin{tabular}{l}
\[
2
\] \\
Capacity
\end{tabular} & \begin{tabular}{l}
VIC \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \begin{tabular}{l}
2 \\
Capacity
\end{tabular} & \begin{tabular}{l}
V/C \\
Ratio
\end{tabular} & \\
\hline Nb Left & 514 & 0 & 0.151 & 39 & 552 & 0.162 & 0 & 552 & 0 & 0.162 & 0 & 552 & 0 & 0.162 & 0 & 552 & 0 & & 0.162 \\
\hline Nb Thru [3] & 123 & 3400 & 0.187 * & 9 & 132 & 0.201 * & 0 & 132 & 3400 & 0.201 * & 0 & 132 & 3400 & 0.201 * & 0 & 132 & 3400 & & 0.201 * \\
\hline Nb Right & 56 & 1700 & 0.033 & 4 & 60 & 0.035 & 4 & 64 & 1700 & 0.038 & 0 & 64 & 1700 & 0.038 & 0 & 64 & 1700 & & 0.038 \\
\hline Sb Left & 41 & 0 & 0.024 & 3 & 44 & 0.026 & 2 & 46 & 0 & 0.027 & 0 & 46 & 0 & 0.027 & 0 & 46 & 0 & & 0.027 \\
\hline Sb Thru [3] & 0 & 1700 & 0.128 * & 0 & 0 & 0.138 * & 0 & 0 & 1700 & 0.144 * & 0 & 0 & 1700 & 0.144 * & 0 & 0 & 1700 & & 0.144 * \\
\hline Sb Right & 178 & 0 & - & 13 & 191 & - & 9 & 200 & 0 & - & 0 & 200 & 0 & - & 0 & 200 & 0 & - & \\
\hline Eb Left & 85 & 1700 & 0.050 * & 6 & 92 & 0.054 * & 9 & 101 & 1700 & 0.059 * & 0 & 101 & 1700 & 0.059 * & 0 & 101 & 1700 & & 0.059 * \\
\hline Eb Thru & 350 & 3400 & 0.103 & 26 & 376 & 0.111 & 11 & 387 & 3400 & 0.114 & 0 & 387 & 3400 & 0.114 & 0 & 387 & 3400 & & 0.114 \\
\hline Eb Right & 0 & 0 & - & 0 & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 & - & \\
\hline Wb Left & 0 & 0 & 0.000 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & & 0.000 \\
\hline Wb Thru & 487 & 3400 & 0.150 * & 37 & 524 & 0.162 * & 21 & 545 & 3400 & 0.169 * & 28 & 573 & 3400 & 0.178 * & 0 & 573 & 3400 & & 0.178 * \\
\hline Wb Right & 24 & 0 & - & 2 & 26 & - & 3 & 29 & 0 & - & 4 & 33 & 0 & - & 0 & 33 & 0 & - & \\
\hline \multicolumn{2}{|l|}{Yellow Allowance:} & \multicolumn{2}{|r|}{0.100 *} & \multicolumn{3}{|r|}{0.100 *} & \multicolumn{4}{|r|}{0.100 *} & \multicolumn{4}{|r|}{0.100 *} & \multicolumn{2}{|l|}{} & & & 0.100 * \\
\hline ICU & & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\(B^{0.616}\)}} & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{B 0.655}} & \multicolumn{4}{|r|}{\multirow[t]{2}{*}{B \({ }^{0.674}\)}} & \multicolumn{4}{|r|}{\multirow[t]{2}{*}{\(B^{0.683}\)}} & \multicolumn{5}{|r|}{0.683} \\
\hline LOS & & & & & & & & & & & & & & & \multicolumn{5}{|c|}{B} \\
\hline
\end{tabular}
*Key conflicting movement as a part of ICU
1 Counts conducted by: The Traffic Solution
2 Capacity expressed in veh/hour of green
3 Northbound and southbound approaches operate with split signal phasing.
Note: Year 2008 manual traffic counts were adjusted by a 1.5 percent (1.5\%) ambient growth factor to reflect year 2009 existing conditions.

LINSCOTT, LAW \& GREENSPAN, ENGINEERS
236 N. Chester Avenue, Suite 200, Pasadena CA 91106
(626) 796.2322 Fax (626) 792.0941
\begin{tabular}{ll} 
N-S St: & Crown Avenue-l-210 Freeway NB Off Ramp \\
E-W St: & Foothill Boulevard \\
Project: & HWP Annex Project/1-083745-1 \\
File: & ICU2
\end{tabular}

File:

\section*{INTERSECTION CAPACITY UTILIZATION}

Crown Avenue-l-210 Freeway NB Off Ramp @ Foothill Boulevard
Peak hr:
Weekend Mid-day

Annual Growth: \(\quad 1.50 \%\)

Date
Date:
Projection Year:

03/11/2009
2009


Key conflicting mavement as a part of ICU
Counts conducted by: The Traffic Solution
Capacity expressed in veh/hour of green
3 Northbound and southbound approaches operate with split signal phasing.
Note: Year 2008 manual traffic counts were adjusted by a 1.5 percent (1.5\%) ambient growth factor to reflect year 2009 existing conditions.

LINSCOTT, LAW \& GREENSPAN, ENGINEERS
236 N. Chester Avenue, Suite 200, Pasadena CA 91106
(626) 796.2322 Fax (626) 792.0941
\begin{tabular}{ll} 
N-S St: & 1-210 Freeway SB On/Off Ramps \\
E-W St: & Berkshire Place \\
Project: & HWP Annex Project/1-083745-1 \\
File: & ICU3
\end{tabular}

INTERSECTION CAPACITY UTILIZATION
l-210 Freeway SB On/Off Ramps @ Berkshire Place
Peak hr:
Peak hr: AM
Annual Growth: \(\quad 1.50 \%\)

03/11/2009
2009


Capacity expressed in veh/hour of green
Note: Year 2008 manual traffic counts were adjusted by a 1.5 percent ( \(1.5 \%\) ) ambient growth factor to reflect year 2009 existing conditions.

LINSCOTT, LAW \& GREENSPAN, ENGINEERS
236 N. Chester Avenue, Suite 200, Pasadena CA 91106
(626) 796.2322 Fax (626) 792.0941
\begin{tabular}{ll} 
N-S St: & I-210 Freeway SB On/Off Ramps \\
E-W St: & Berkshire Place \\
Project: & HWP Annex Project/1-083745-1 \\
File: & ICU3
\end{tabular}

\section*{INTERSECTION CAPACITY UTILIZATION}

I-210 Freeway SB On/Off Ramps @ Berkshire Place
Peak hr: PM Date:

Date:
Date of Count:

03/11/2009
2009


1 Counts conducted by: The Traffic Solution
Capacity expressed in veh/hour of green
Note: Year 2008 manual traffic counts were adjusted by a 1.5 percent (1.5\%) ambient growth factor to reflect year 2009 existing conditions.

LINSCOTT, LAW \& GREENSPAN, ENGINEERS
236 N. Chester Avenue, Suite 200, Pasadena CA 91106
(626) 796.2322 Fax (626) 792.0941

\section*{NTERSECTION CAPACITY UTILIZATION}


HWP Annex Project/1-083745-1
ICU3

Date:
Date of Count:

Projection Year:

03/11/2009
2009


LINSCOTT, LAW \& GREENSPAN, ENGINEERS
236 N. Chester Avenue, Suite 200, Pasadena CA 91106
(626) 796.2322 Fax (626) 792.0941

\section*{INTERSECTION CAPACITY UTILIZATION}

1-210 Freeway NB On/Off Ramps @ Berkshire Place
Peak hr:

Annual Growth
AM
N-S St: l-210 Freeway NB On/Off Ramps
E-W St: Berkshire Place
File: ICU4

Project: HWP Annex Froject/1-083745-1

Date: of Count:
Projection Year:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{2009 EXIST. TRAFFIC} & \multicolumn{3}{|l|}{2014 W/AMBIENT GROWTH} & \multicolumn{4}{|l|}{2014 W/RELATED PROJECTS} & \multicolumn{4}{|l|}{2014 W/PROJECT SITE TRAFFIC} & \multicolumn{4}{|l|}{2014 WIPROJECT MITIGATION} \\
\hline Movement & Volume & \[
\text { Capacity }{ }^{2}
\] & \begin{tabular}{l}
V/C \\
Ratio
\end{tabular} & Added Volume & Total Volume & \begin{tabular}{l}
V/c \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \[
\begin{array}{r}
2 \\
\text { Capacity }
\end{array}
\] & \[
\begin{gathered}
\text { VIC } \\
\text { Ratio }
\end{gathered}
\] & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & Capacity & \[
\begin{gathered}
\text { V/C } \\
\text { Ratio }
\end{gathered}
\] & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & Capacity \({ }^{2}\) & \begin{tabular}{l}
V/C \\
Ratio
\end{tabular} \\
\hline Nb Left & 72 & 0 & 0.042 & 5 & 77 & 0.046 & 0 & 77 & 0 & 0.046 & 0 & 77 & 0 & 0.046 & 0 & 77 & 0 & 0.046 \\
\hline Nb Thru & 0 & 1700 & 0.042 & 0 & 0 & 0.046 & 0 & 0 & 1700 & 0.046 & 0 & 0 & 1700 & 0.046 & 0 & 0 & 1700 & 0.046 \\
\hline Nb Right & 368 & 1700 & 0.217 * & 28 & 396 & 0.233 * & 1 & 397 & 1700 & 0.234 * & 17 & 414 & 1700 & 0.244 * & 0 & 414 & 1700 & 0.244 * \\
\hline Sb Left & 0 & 0 & 0.000 * & 0 & 0 & 0.000 * & 0 & 0 & 0 & 0.000 * & 0 & 0 & 0 & 0.000 * & 0 & 0 & 0 & 0.000 * \\
\hline Sb Thru & 0 & 0 & 0.000 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 \\
\hline Sb Right & 0 & 0 & - & 0 & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 & - \\
\hline Eb Left & 116 & 1700 & 0.068 * & 9 & 124 & 0.073 * & 0 & 124 & 1700 & 0.073 * & 0 & 124 & 1700 & 0.073 * & 0 & 124 & 1700 & 0.073 * \\
\hline Eb Thru & 955 & 3400 & 0.281 & 72 & 1027 & 0.302 & 0 & 1027 & 3400 & 0.302 & 4 & 1031 & 3400 & 0.303 & 0 & 1031 & 3400 & 0.303 \\
\hline Eb Right & 0 & 0 & - & 0 & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 & - \\
\hline Wb Left & 0 & 0 & 0.000 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 \\
\hline Wb Thru & 225 & 1700 & 0.133 & 17 & 242 & 0.142 & 0 & 242 & 1700 & 0.142 & 0 & 242 & 1700 & 0.142 & 0 & 242 & 1700 & 0.142 \\
\hline Wb Right [3 & 614 & 1700 & 0.361 * & 46 & 660 & 0.388 * & 0 & 660 & 1700 & 0.388 * & 0 & 660 & 1700 & 0.388 * & 0 & 660 & 1700 & 0.388 * \\
\hline \multicolumn{2}{|l|}{Yellow Allowance:} & \multicolumn{3}{|c|}{0.100 *} & \multicolumn{3}{|c|}{0.100 *} & \multicolumn{3}{|r|}{0.100 *} & \multicolumn{4}{|r|}{0.100 *} & & & & 0.100 * \\
\hline ICU & & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{c 0.746}} & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{C \(\quad 0.794\)}} & & & & 0.795 & & & & 0.805 & & & & 0.805 \\
\hline LOS & & & & & & & \multicolumn{4}{|c|}{c} & \multicolumn{4}{|c|}{D} & & & & D \\
\hline
\end{tabular}

2 Capacity expressed in veh/hour of green
3 Due to the high westbound right-turn volumes onto the northbound l-210 freeway on-ramp, the westbound curb lane functions as a right-turn only lane. Note: Year 2008 manual traffic counts were adjusted by a 1.5 percent (1.5\%) ambient growth factor to reffect year 2009 existing conditions.

LINSCOTT, LAW \& GREENSPAN, ENGINEERS
236 N. Chester Avenue, Suite 200, Pasadena CA 91106
(626) 796.2322 Fax (626) 792.0941

\section*{INTERSECTION CAPACITY UTILIZATION}
\begin{tabular}{ll} 
N-S St: & l-210 Freeway NB On/Off Ramps \\
E-W St: & Berkshire Place \\
Project: & HWP Annex Project/1-083745-1 \\
File &
\end{tabular}
\(\begin{array}{ll}\text { File: } & \text { ICU4 }\end{array}\)
ICU4
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 2009 & EXIST. TRAFF & & 2014 & WIAMBIEN & IT GROWTH & & W/RELATE & ED PROJEC & & & W/PROJEC & CT SITE TR & RAFFIC & & W/PROJE & ct mitigation & & \\
\hline Movement & Volume & \begin{tabular}{l}
\[
2
\] \\
Capacity
\end{tabular} & \begin{tabular}{l}
V/C \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \begin{tabular}{l}
V/C \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \[
\begin{array}{r}
2 \\
\text { Capacity }
\end{array}
\] & \begin{tabular}{l}
V/C \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \[
\begin{array}{r}
2 \\
\text { Capacity }
\end{array}
\] & \begin{tabular}{l}
VIC \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \[
\begin{array}{r}
2 \\
\text { Capacity }
\end{array}
\] & \begin{tabular}{l}
VIC \\
Ratio
\end{tabular} & \\
\hline Nb Left & 114 & 0 & 0.067 & 9 & 122 & 0.072 & 0 & 122 & 0 & 0.072 & 0 & 122 & 0 & 0.072 & 0 & 122 & 0 & & 0.072 \\
\hline Nb Thru & 3 & 1700 & 0.069 * & 0 & 3 & 0.074 * & 0 & 3 & 1700 & 0.074 & 0 & 3 & 1700 & 0.074 & 0 & 3 & 1700 & & 0.074 \\
\hline Nb Right & 116 & 1700 & 0.068 & 9 & 124 & 0.073 & 4 & 128 & 1700 & 0.076 * & 0 & 128 & 1700 & 0.076 * & 0 & 128 & 1700 & & 0.076 * \\
\hline Sb Left & 0 & 0 & 0.000 * & 0 & 0 & 0.000 * & 0 & 0 & 0 & 0.000 * & 0 & 0 & 0 & 0.000 * & 0 & 0 & 0 & & 0.000 * \\
\hline Sb Thru & 0 & 0 & 0.000 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & & 0.000 \\
\hline Sb Right & 0 & 0 & - & 0 & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 & - & \\
\hline Eb Left & 82 & 1700 & 0.048 * & 6 & 88 & 0.052 * & 0 & 88 & 1700 & 0.052 * & 0 & 88 & 1700 & 0.052 * & 0 & 88 & 1700 & & 0.052 * \\
\hline Eb Thru & 161 & 3400 & 0.047 & 12 & 173 & 0.051 & 1 & 174 & 3400 & 0.051 & 0 & 174 & 3400 & 0.051 & 0 & 174 & 3400 & & 0.051 \\
\hline Eb Right & 0 & 0 & - & 0 & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 & - & \\
\hline Wb Left & 0 & 0 & 0.000 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & & 0.000 \\
\hline Wb Thru & 350 & 1700 & 0.206 & 26 & 376 & 0.221 & 7 & 383 & 1700 & 0.226 & 20 & 403 & 1700 & 0.237 & 0 & 403 & 1700 & & 0.237 \\
\hline Wb Right [3 & 3. 517 & 1700 & 0.304 * & 39 & 555 & 0.327 * & 0 & 555 & 1700 & 0.327 * & 0 & 555 & 1700 & 0.327 * & 0 & 555 & 1700 & & 0.327 * \\
\hline \multicolumn{2}{|l|}{Yellow Allowance:} & \multicolumn{2}{|r|}{0.100 *} & \multicolumn{3}{|r|}{0.100 *} & \multicolumn{4}{|r|}{0.100 *} & \multicolumn{4}{|r|}{0.100 *} & \multicolumn{5}{|r|}{0.100 *} \\
\hline ICU & & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\(A^{0.521}\)}} & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{A 0.552}} & \multicolumn{4}{|r|}{\multirow[t]{2}{*}{A 0.554}} & \multicolumn{4}{|r|}{\multirow[t]{2}{*}{A 0.554}} & \multicolumn{5}{|r|}{0.554} \\
\hline LOS & & & & & & & & & & & & & & & \multicolumn{5}{|r|}{A} \\
\hline
\end{tabular}

Counts conducted by. The Traffic Solution
2 Capacity expressed in veh/hour of green
3 Due to the high westbound right-turn volumes onto the northbound l-210 freeway on-ramp, the westbound curb lane functions as a right-turn only lane. Note: Year 2008 manual traffic counts were adjusted by a 1.5 percent (1.5\%) ambient growth factor to reflect year 2009 existing conditions.

LINSCOTT, LAW \& GREENSPAN, ENGINEERS
236 N. Chester Avenue, Suite 200, Pasadena CA 91106
626) 796.2322 Fax (626) 792.0941

\section*{INTERSECTION CAPACITY UTILIZATION}
-210 Freeway NB On/Off Ramps @ Berkshire Place Peak hr: Weekend Mid-day
Annual Growth: \(\quad 1.50 \%\)

Date: Date Count:
ate of
Projection Year:


ICU4

*Key conflicting movement as a part of ICU
Counts conducted by: The Traffic Solution
Capacity expressed in veh/hour of green
3 Due to the high westbound right-furn volumes onto the northbound l-210 freeway on-ramp, the westbound curb lane functions as a right-turn only lane. Note: Year 2008 manual traffic counts were adjusted by a 1.5 percent ( \(1.5 \%\) ) ambient growth factor to reflect year 2009 existing conditions.

LINSCOTT, LAW \& GREENSPAN, ENGINEERS
236 N. Chester Avenue, Suite 200, Pasadena CA 91106
(626) 796.2322 Fax (626) 792.0941
\begin{tabular}{ll} 
N-S St: & Oak Grove Drive \\
E-W St: & Foothill Boulevard \\
Project: & HWP Annex Project/1-083745-1 \\
File: & ICU5
\end{tabular}

INTERSECTION CAPACITY UTILIZATION
Oak Grove Drive @ Foothil Boulevard
Peak hr: AM
A. \(50 \%\)

Annual Growth:

Date:
Date of Count:
Projection Year:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{2009 EXIST. TRAFFIC} & \multicolumn{3}{|l|}{2014 W/AMBIENT GROWTH} & \multicolumn{4}{|l|}{2014 W/RELATED PROJECTS} & \multicolumn{4}{|l|}{2014 W/PROJECT SITE TRAFFIC} & \multicolumn{4}{|l|}{2014 W/PROJECT MITIGATION} \\
\hline Movement & Volume & Capacity \({ }^{2}\) & V/C Ratio & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \begin{tabular}{l}
V/c \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \[
\begin{array}{r}
2 \\
\text { Capacity } \\
\hline
\end{array}
\] & \[
\begin{gathered}
\text { V/C } \\
\text { Ratio }
\end{gathered}
\] & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & Capacity & \[
\begin{gathered}
\text { V/C } \\
\text { Ratio }
\end{gathered}
\] & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & Capacity \({ }^{2}\) & \begin{tabular}{l}
V/C \\
Ratio
\end{tabular} \\
\hline Nb Left & 203 & 1700 & 0.119 & 15 & 218 & 0.128 & 0 & 218 & 1700 & 0.128 & 0 & 218 & 1700 & 0.128 & 0 & 218 & 1700 & 0.128 \\
\hline Nb Thru & 714 & 3400 & 0.219 * & 54 & 767 & 0.236 * & 0 & 767 & 3400 & 0.237 * & 0 & 767 & 3400 & 0.251 * & 0 & 767 & 3400 & 0.251 * \\
\hline Nb Right & 32 & 0 & - & 2 & 35 & - & 5 & 40 & 0 & - & 46 & 86 & 0 & - & 0 & 86 & 0 & - \\
\hline Sb Left & 4 & 1700 & 0.002 * & 0 & 4 & 0.003 * & 0 & 4 & 1700 & 0.003 * & 4 & 8 & 1700 & 0.005 * & 0 & 8 & 1700 & 0.005 * \\
\hline Sb Thru & 65 & 3400 & 0.026 & 5 & 70 & 0.028 & 0 & 70 & 3400 & 0.028 & 0 & 70 & 3400 & 0.028 & 0 & 70 & 3400 & 0.028 \\
\hline Sb Right & 23 & 0 & - & 2 & 25 & - & 0 & 25 & 0 & - & 0 & 25 & 0 & - & 0 & 25 & 0 & - \\
\hline Eb Left & 194 & 0 & 0.114 & 15 & 208 & 0.123 & 0 & 208 & 0 & 0.123 & 0 & 208 & 0 & 0.123 & 0 & 208 & 0 & 0.123 \\
\hline Eb Thru & 27 & 1700 & 0.130 & 2 & 29 & 0.140 & 2 & 31 & 1700 & 0.141 & 34 & 65 & 1700 & 0.161 & 0 & 65 & 1700 & 0.161 \\
\hline Eb Right & 531 & 1700 & 0.312 * & 40 & 571 & 0.336 * & 0 & 571 & 1700 & 0.336 * & 0 & 571 & 1700 & 0.336 * & 0 & 571 & 1700 & 0.336 * \\
\hline Wb Left & 65 & 0 & 0.038 * & 5 & 70 & 0.041 * & 1 & 71 & 0 & 0.042 * & 0 & 71 & 0 & 0.042 * & 0 & 71 & 0 & 0.042 * \\
\hline Wb Thru & 61 & 1700 & 0.084 & 5 & 65 & 0.090 & 1 & 66 & 1700 & 0.092 & 0 & 66 & 1700 & 0.092 & 0 & 66 & 1700 & 0.092 \\
\hline Wb Right & 17 & 0 & - & 1 & 19 & - & 0 & 19 & 0 & - & 0 & 19 & 0 & - & 0 & 19 & 0 & - \\
\hline \multicolumn{2}{|l|}{Yellow Allowance:} & \multicolumn{2}{|r|}{0.100 *} & \multicolumn{3}{|r|}{0.100 *} & \multicolumn{4}{|r|}{0.100 *} & \multicolumn{4}{|r|}{0.100 *} & & & & 0.100 * \\
\hline ICU & & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{B \({ }^{0.672}\)}} & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{C 0.715}} & \multicolumn{4}{|r|}{\multirow[t]{2}{*}{c \({ }^{0.717}\)}} & \multicolumn{4}{|r|}{\multirow[t]{2}{*}{\(c^{0.733}\)}} & & & & 0.733 \\
\hline LOS & & & & & & & & & & & & & & & & & & C \\
\hline
\end{tabular}

2 Capacity expressed in veh/hour of green
Note: Year 2008 manual traffic counts were adjusted by a 1.5 percent (1.5\%) ambient growth factor to reflect year 2009 existing conditions.

LINSCOTT, LAW \& GREENSPAN, ENGINEERS
236 N. Chester Avenue, Suite 200, Pasadena CA 91106
626) 796.2322 Fax (626) 792.0941

\section*{INTERSECTION CAPACITY UTILIZATION}

Oak Grove Drive @ Foothill Boulevard
Peakhr: PM
Annual Growth: \(\quad 1.50 \%\)
Foothill Boulevard
\(\begin{array}{ll}\text { E-W St: } & \text { Foothill Boulevard } \\ \text { Project: } & \text { HWP Annex Project/1-083745-1 }\end{array}\)
File: ICU5

Date
Date of Count:
Projection Year:
03/11/2009 2009
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{2009 EXIST. TRAFFIC} & \multicolumn{3}{|l|}{2014 W/AMBIENT GROWTH} & \multicolumn{4}{|l|}{2014 W/RELATED PROJECTS} & \multicolumn{4}{|l|}{2014 W/PROJEGT SITE TRAFFIC} & \multicolumn{4}{|l|}{2014 WIPROJECT MITIGATION} \\
\hline Movement & Volume & Capacity \({ }^{2}\) & \[
\begin{aligned}
& \text { V/C } \\
& \text { Ratio }
\end{aligned}
\] & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \begin{tabular}{l}
V/C \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \[
\begin{array}{r}
2 \\
\text { Capacity }
\end{array}
\] & \begin{tabular}{l}
V/c \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \[
\begin{array}{r}
2 \\
\text { Capacity }
\end{array}
\] & \begin{tabular}{l}
V/C \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \[
\begin{array}{r}
2 \\
\text { Capacity }
\end{array}
\] & \begin{tabular}{l}
V/C \\
Ratio
\end{tabular} \\
\hline Nb Left & 273 & 1700 & 0.161 * & 20 & 294 & 0.173 * & 5 & 299 & 1700 & 0.176 * & 0 & 299 & 1700 & 0.176 * & 0 & 299 & 1700 & 0.176 * \\
\hline Nb Thru & 71 & 3400 & 0.038 & 5 & 76 & 0.041 & 0 & 76 & 3400 & 0.048 & 0 & 76 & 3400 & 0.048 & 0 & 76 & 3400 & 0.048 \\
\hline Nb Right & 58 & 0 & - & 4 & 62 & - & 24 & 86 & 0 & - & 0 & 86 & 0 & - & 0 & 86 & 0 & - \\
\hline Sb Left & 23 & 1700 & 0.014 & 2 & 25 & 0.015 & 0 & 25 & 1700 & 0.015 & 0 & 25 & 1700 & 0.015 & 0 & 25 & 1700 & 0.015 \\
\hline Sb Thru & 758 & 3400 & 0.286 * & 57 & 815 & 0.307 * & 0 & 815 & 3400 & 0.307 * & 0 & 815 & 3400 & 0.307 * & 0 & 815 & 3400 & 0.307 * \\
\hline Sb Right & 214 & 0 & - & 16 & 230 & - & 0 & 230 & 0 & - & 0 & 230 & 0 & - & 0 & 230 & 0 & - \\
\hline Eb Left & 30 & 0 & 0.018 & 2 & 33 & 0.019 & 0 & 33 & 0 & 0.019 & 0 & 33 & 0 & 0.019 & 0 & 33 & 0 & 0.019 \\
\hline Eb Thru & 22 & 1700 & 0.031 & 2 & 24 & 0.033 & 13 & 37 & 1700 & 0.041 & 0 & 37 & 1700 & 0.041 & 0 & 37 & 1700 & 0.041 \\
\hline Eb Right & 231 & 1700 & 0.136 * & 17 & 249 & 0.146 * & 4 & 253 & 1700 & 0.149 * & 0 & 253 & 1700 & 0.149 * & 0 & 253 & 1700 & 0.149 * \\
\hline Wb Left & 17 & 0 & 0.010 * & 1 & 19 & 0.011 * & 34 & 53 & 0 & 0.031 * & 43 & 96 & 0 & 0.056 * & 0 & 96 & 0 & 0.056 * \\
\hline Wb Thru & 14 & 1700 & 0.021 & 1 & 15 & 0.022 & 18 & 33 & 1700 & 0.053 & 32 & 65 & 1700 & 0.100 & 0 & 65 & 1700 & 0.100 \\
\hline Wb Right & 4 & 0 & - & 0 & 4 & - & 0 & 4 & 0 & - & 4 & 8 & 0 & - & 0 & 8 & 0 & - \\
\hline Yellow Allow & wance: & & 0.100 * & \multicolumn{3}{|r|}{0.100 *} & \multicolumn{4}{|r|}{0.100 *} & \multicolumn{4}{|r|}{0.100 *} & & & & 0.100 * \\
\hline ICU & & & 0.693 & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{C 0.737}} & \multicolumn{4}{|r|}{\multirow[t]{2}{*}{c \({ }^{0.763}\)}} & \multicolumn{4}{|r|}{\multirow[t]{2}{*}{c \({ }^{0.788}\)}} & & & & 0.788 \\
\hline LOS & & \multicolumn{2}{|r|}{B} & & & & & & & & & & & & \multicolumn{4}{|r|}{c} \\
\hline
\end{tabular}
*Key conflicting movement as a part of ICU
1 Counts conducted by: The Traffic Solution
2 Capacity expressed in veh/hour of green
Note: Year 2008 manual traffic counts were adjusted by a 1.5 percent (1.5\%) ambient growth factor to reflect year 2009 existing conditions.

LINSCOTT, LAW \& GREENSPAN, ENGINEERS
236 N. Chester Avenue, Suite 200, Pasadena CA 91106
626) 796.2322 Fax (626) 792.0941
\begin{tabular}{ll} 
N-S St: & Oak Grove Drive \\
E-W St: & Foothill Boulevard \\
Project: & HWP Annex Project/1-083745-1 \\
File: & ICU5
\end{tabular}

INTERSECTION CAPACITY UTILIZATION
```

Oak Grove Drive @ Foothill Boulevard
Weekend Mid-day

```
Peak hr:

Annual Growth: \(\quad 1.50 \%\)

Date:
Date of Count: Projection Year:

03/11/2009 2009

*Key conflicting movement as a part of ICU
1 Counts conducted by: The Traffic Solution
2 Capacity expressed in veh/hour of green
Note: Year 2008 manual traffic counts were adjusted by a 1.5 percent ( \(1.5 \%\) ) ambient growth factor to reflect year 2009 existing conditions.

LINSCOTT, LAW \& GREENSPAN, ENGINEERS
236 N. Chester Avenue, Suite 200, Pasadena CA 91106
(626) 796.2322 Fax (626) 792.0941
\begin{tabular}{ll} 
N-S St: & Oak Grove Drive \\
E-W St: & Berkshire Place \\
Project: & HWP Annex Project/1-083745-1 \\
File: & ICU6
\end{tabular}

INTERSECTION CAPACITY UTILIZATION
Oak Grove Dive @ Berkshire Plac
\(A M\)
\(150 \%\)
Annual Growth: \(\quad 1.50 \%\)

Date:
Date of Count:
Projection Year:

03/11/2009 2009 2014


Counts conducted by: The Traffic Solution
2 Capacity expressed in veh/hour of green
Note: Year 2008 manual traffic counts were adjusted by a 1.5 percent (1.5\%) ambient growth factor to reflect year 2009 existing condifions.

LINSCOTT, LAW \& GREENSPAN, ENGINEERS
236 N. Chester Avenue, Suite 200, Pasadena CA 91106
(626) 796.2322 Fax (626) 792.0941

\section*{INTERSECTION CAPACITY UTILIZATION}
Oak Grove Drive @ Berkshire Place
Peak hr: PM
Annual Growth: \(\quad 1.50 \%\)
\(\begin{array}{lr}\text { Date: } & 03 / 11 / 2009 \\ \text { Date of Count: } & 2009\end{array}\)
Projection Year
\begin{tabular}{ll} 
N-S St: & Oak Grove Drive \\
E-W St: & Berkshire Place \\
Project: & HWP Annex Project/1-083745-1
\end{tabular}

AWP Anex Project/1-083745-1
HWP
ICU6
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{2009 EXIST. TRAFFIC} & \multicolumn{3}{|l|}{2014 WIAMBIENT GROWTH} & \multicolumn{4}{|l|}{2014 W/RELATED PROJECTS} & \multicolumn{4}{|l|}{2014 W/PROJECT SITE TRAFFIC} & \multicolumn{4}{|l|}{2014 WIPROJECT MITIGATION} \\
\hline Movement & Volume & Capacity \({ }^{2}\) & \begin{tabular}{l}
V/C \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \begin{tabular}{l}
V/C \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & Total Volume & Capacity & \begin{tabular}{l}
VIC \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & Total Volume & Capacity & \begin{tabular}{l}
V/C \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \[
\begin{array}{r}
2 \\
\text { Capacity }
\end{array}
\] & \begin{tabular}{l}
V/C \\
Ratio
\end{tabular} \\
\hline Nb Left & 94 & 1700 & 0.056 * & 7 & 101 & 0.060 * & 0 & 101 & 1700 & 0.060 * & 0 & 101 & 1700 & 0.060 * & 0 & 101 & 1700 & 0.060 * \\
\hline Nb Thru & 144 & 3400 & 0.042 & 11 & 155 & 0.046 & 24 & 179 & 3400 & 0.053 & 0 & 179 & 3400 & 0.053 & 0 & 179 & 3400 & 0.053 \\
\hline Nb Right & 0 & 0 & - & 0 & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 & - \\
\hline Sb Left & 0 & 0 & 0.000 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 \\
\hline Sb Thru & 269 & 1700 & 0.158 & 20 & 289 & 0.170 & 31 & 320 & 1700 & 0.188 & 24 & 344 & 1700 & 0.202 & 0 & 344 & 1700 & 0.202 \\
\hline Sb Right [3] & 791 & 1700 & 0.391 * & 59 & 850 & 0.421 * & 7 & 857 & 1700 & 0.423 * & 20 & 877 & 1700 & 0.435 * & 0 & 877 & 1700 & 0.435 * \\
\hline Eb Left & 225 & 0 & 0.074 & 17 & 242 & 0.079 & 5 & 247 & 0 & 0.081 & 0 & 247 & 0 & 0.081 & 0 & 247 & 0 & 0.081 \\
\hline Eb Thru & 0 & 3060 & 0.097 * & 0 & 0 & 0.104 * & 0 & 0 & 3060 & 0.106 * & 0 & 0 & 3060 & 0.106 * & 0 & 0 & 3060 & 0.106 * \\
\hline Eb Right & 72 & 0 & - & 5 & 77 & - & 0 & 77 & 0 & - & 0 & 77 & 0 & - & 0 & 77 & 0 & - \\
\hline Wb Left & 0 & 0 & 0.000 * & 0 & 0 & 0.000 * & 0 & 0 & 0 & 0.000 * & 0 & 0 & 0 & 0.000 * & 0 & 0 & 0 & 0.000 * \\
\hline Wb Thru & 0 & 0 & 0.000 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 \\
\hline Wb Right & 0 & 0 & - & 0 & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 & - \\
\hline Yellow Allowa & vance: & & 0.100 * & \multicolumn{3}{|r|}{0.100 *} & \multicolumn{4}{|r|}{0.100 *} & \multicolumn{4}{|r|}{0.100 *} & & & & 0.100 * \\
\hline ICU & & & \multirow[t]{2}{*}{B 0.644} & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{B 0.685}} & \multicolumn{4}{|r|}{\multirow[t]{2}{*}{B 0.689}} & \multicolumn{4}{|r|}{\multirow[t]{2}{*}{\(c^{0.701}\)}} & & & & 0.701 \\
\hline LOS & & B & & & & & & & & & & & & & \multicolumn{4}{|r|}{c} \\
\hline
\end{tabular}

1 Counts conducted by: The Traffic Solution
2 Capacity expressed in veh/hour of green
Southbound right-turn overlapping phase with eastbound phase
Note: Year 2008 manual traffic counts were adjusted by a 1.5 percent (1.5\%) ambient growth factor to reflect year 2009 existing conditions.

LINSCOTT, LAW \& GREENSPAN, ENGINEERS
236 N. Chester Avenue, Suite 200, Pasadena CA 91106
(626) 796.2322 Fax (626) 792.0941
\begin{tabular}{ll} 
N-S St: & Oak Grove Drive \\
E-W St: & Berkshire Place \\
Project: & HWP Annex Project \(/\)-083745-1 \\
File: & ICUG
\end{tabular}

INTERSECTION CAPACITY UTILIZATION
Oak Grove Drive @ Berkshire Place
Peak hr: Weekend Mid-day
Annual Growth: eekend
\(1.50 \%\)

Date
Date of Count:
Projection Year:
33/11/2009

*Key conflicting movement as a part of ICU
1 Counts conducted by: The Traffic Solution
2 Capacity expressed in veh/hour of green
3 Southbound right-turn overlapping phase with eastbound phase.
Note: Year 2008 manual traffic counts were adjusted by a 1.5 percent (1.5\%) ambient growth factor to reflect year 2009 existing conditions.

LINSCOTT, LAW \& GREENSPAN, ENGINEERS
236 N. Chester Avenue, Suite 200, Pasadena CA 91106
(626) 796. 2322 Fax (626) 792.0941
\begin{tabular}{ll} 
N-S St: & Oak Grove Drive \\
E-W St: & Linda Vista Avenue \\
Project: & HWP Annex Project/1-083745-1 \\
File: & ICU7
\end{tabular}

Project: HWP Annex Project/1-083745-1
File: ICU7

INTERSECTION CAPACITY UTILIZATION

\section*{Oak Grove Drive@ Linda Vista Avenue}
Peak hr: AM
Annual Growth: \(\quad 1.50 \%\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{2009 EXIST. TRAFFIC} & \multicolumn{3}{|l|}{2014 W/AMBIENT GROWTH} & \multicolumn{4}{|l|}{2014 W/RELATED PROJECTS} & \multicolumn{4}{|l|}{2014 W/PROJECT SITE TRAFFIC} & \multicolumn{4}{|l|}{2014 W/PROJECT MITIGATION} \\
\hline Movement & Volume & \[
\text { Capacity }{ }^{2}
\] & \begin{tabular}{l}
V/C \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \begin{tabular}{l}
VIC \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \begin{tabular}{l}
\[
2
\] \\
Capacity
\end{tabular} & \[
\begin{gathered}
\text { V/C } \\
\text { Ratio }
\end{gathered}
\] & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \begin{tabular}{l}
\[
2
\] \\
Capacity
\end{tabular} & \begin{tabular}{l}
\[
\mathrm{V} / \mathrm{C}
\] \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \begin{tabular}{l}
2 \\
Capacity
\end{tabular} & \begin{tabular}{l}
VIC \\
Ratio
\end{tabular} \\
\hline Nb Left & 126 & 0 & 0.037 & 9 & 135 & 0.040 & 1 & 136 & 0 & 0.040 & 8 & 144 & 0 & 0.042 & 0 & 144 & 0 & 0.042 \\
\hline Nb Thru & 0 & 3400 & 0.066 * & 0 & 0 & 0.071 * & 0 & 0 & 3400 & 0.072 * & 0 & 0 & 3400 & 0.074 * & 0 & 0 & 3400 & 0.074 * \\
\hline Nb Right & 98 & 0 & - & 7 & 106 & - & 1 & 107 & 0 & - & 0 & 107 & 0 & - & 0 & 107 & 0 & - \\
\hline Sb Left & 0 & 0 & 0.000 * & 0 & 0 & 0.000 * & 0 & 0 & 0 & 0.000 * & 0 & 0 & 0 & 0.000 * & 0 & 0 & 0 & 0.000 * \\
\hline Sb Thru & 0 & 0 & 0.000 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 \\
\hline Sb Right & 0 & 0 & - & 0 & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 & - \\
\hline Eb Left & 0 & 0 & 0.000 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 \\
\hline Eb Thru & 147 & 3400 & 0.043 & 11 & 158 & 0.047 & 1 & 159 & 3400 & 0.047 & 0 & 159 & 3400 & 0.047 & 0 & 159 & 3400 & 0.047 \\
\hline Eb Right & 97 & 1700 & 0.057 * & 7 & 105 & 0.062 * & 0 & 105 & 1700 & 0.062 * & 0 & 105 & 1700 & 0.062 * & 0 & 105 & 1700 & 0.062 * \\
\hline Wb Left & 142 & 1700 & 0.084 * & 11 & 153 & 0.090 * & 0 & 153 & 1700 & 0.090 * & 0 & 153 & 1700 & 0.090 * & 0 & 153 & 1700 & 0.090 * \\
\hline Wb Thru & 307 & 3400 & 0.090 & 23 & 330 & 0.097 & 3 & 333 & 3400 & 0.098 & 17 & 350 & 3400 & 0.103 & 0 & 350 & 3400 & 0.103 \\
\hline Wo Right & 0 & 0 & - & 0 & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 & - \\
\hline Yellow Allow & ance: & & 0.100 * & \multicolumn{3}{|r|}{\(0.100^{*}\)} & \multicolumn{4}{|r|}{0.100 *} & \multicolumn{4}{|r|}{0.100 *} & & & & 0.100 * \\
\hline ICU & & & \multirow[t]{2}{*}{A 0.307} & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{A 0.322}} & \multicolumn{4}{|r|}{\multirow[t]{2}{*}{A 0.323}} & \multicolumn{4}{|r|}{\multirow[t]{2}{*}{A 0.325}} & \multicolumn{4}{|r|}{\multirow[t]{2}{*}{\(A^{0.325}\)}} \\
\hline LOS & & A & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
*Key conflicting movement as a part of ICU
1 Counts conducted by: The Traffic Solution
2 Capacity expressed in veh/hour of green
Note: Year 2008 manual traffic counts were adjusted by a 1.5 percent (1.5\%) ambient growth factor to reflect year 2009 existing conditions.

LINSCOTT, LAW \& GREENSPAN, ENGINEERS
236 N. Chester Avenue, Suite 200, Pasadena CA 91106 (626) 796.2322 Fax (626) 792.0941
\begin{tabular}{ll} 
N-S St: & Oak Grove Drive \\
E-W St: & Linda Vista Avenue \\
Project: & HWP Annex Project/1-083745-1 \\
File: & ICU7
\end{tabular}

INTERSECTION CAPACITY UTILIZATION

Oak Grove Drive @ Linda Vista Avenue
Peak hr: PM
Annual Growth: \(\quad 1.50 \%\)

Date:
Date of Count:
Projection Year:

03/11/2009
2009

*Key conflicting movement as a part of ICU
1 Counts conducted by: The Traffic Solution
2 Capacity expressed in veh/hour of green
Note: Year 2008 manual traffic counts were adjusted by a 1.5 percent ( \(1.5 \%\) ) ambient growth factor to reflect year 2009 existing conditions.

LINSCOTT, LAW \& GREENSPAN, ENGINEERS
236 N. Chester Avenue, Suite 200, Pasadena CA 91106
(626) 796.2322 Fax (626) 792.0941
\begin{tabular}{ll} 
N-S St: & Oak Grove Drive \\
E-W St: & Linda Vista Avenue \\
Project: & HWP Annex Project/1-083745-1 \\
File: & ICU7
\end{tabular}

INTERSECTION CAPACITY UTILIZATION
Oak Grove Drive @ Linda Vista Avenue
Peak hr: Weekend Mid-day
1.50\%

Date:
Date:

Projection Year:

03/11/2009
2009


\footnotetext{
* Key conflicting movement as a part of ICU

1 Counts conducted by: The Traffic Solution
}

2 Capacity expressed in veh/hour of green
Note: Year 2008 manual traffic counts were adjusted by a 1.5 percent ( \(1.5 \%\) ) ambient growth factor to reflect year 2009 existing conditions.

\section*{LINSCOTT, LAW \& GREENSPAN, ENGINEERS}

236 N. Chester Avenue, Suite 200, Pasadena CA 91106
(626) 796.2322 Fax (626) 792.0941
\begin{tabular}{ll} 
N-S St: & Highland Drive-Linda Vista Avenue \\
E-W St: & Woodbury Road \\
Project: & HWP Annex Project/1-083745-1 \\
File: & ICU8
\end{tabular}

\section*{INTERSECTION CAPACITY UTILIZATION}

Highland Drive-Linda Vista Avenue @ Woodbury Road Peak hr:
Peak hr:
Annual Growth: AM
1.50\%

Date:
Date: of Count:
03/11/2009
Projection Year:
2014
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{2009 EXIST. TRAFFIC} & \multicolumn{3}{|l|}{2014 W/AMBIENT GROWTH} & \multicolumn{4}{|l|}{2014 W/RELATED PROJECTS} & \multicolumn{4}{|l|}{2014 W/PROJECT SITE TRAFFIC} & \multicolumn{4}{|l|}{2014 WIPROJECT MITIGATION} \\
\hline Movement & Volume & \[
\text { Capacity }{ }^{2}
\] & \begin{tabular}{l}
V/C \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \begin{tabular}{l}
VIG \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \[
\begin{array}{r}
2 \\
\text { Capacity }
\end{array}
\] & \[
\begin{aligned}
& \text { V/C } \\
& \text { Ratio }
\end{aligned}
\] & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & Capacity & \begin{tabular}{l}
VIC \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \[
\text { Capacity }{ }^{2}
\] & \begin{tabular}{l}
VIC \\
Ratio
\end{tabular} \\
\hline Nb Left & 0 & 0 & 0.000 * & 0 & 0 & 0.000 * & 0 & 0 & 0 & 0.000 * & 0 & 0 & 0 & 0.000 * & 0 & 0 & 0 & 0.000 * \\
\hline Nb Thru & 0 & 0 & 0.000 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 \\
\hline Nb Right & 0 & 0 & - & 0 & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 & - \\
\hline Sb Left & 113 & 1700 & 0.066 & 8 & 121 & 0.071 & 0 & 121 & 1700 & 0.071 & 0 & 121 & 1700 & 0.071 & 0 & 121 & 1700 & 0.071 \\
\hline Sb Thru & 0 & 0 & 0.000 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 \\
\hline Sb Right & 129 & 1700 & 0.076 * & 10 & 139 & 0.082 * & 0 & 139 & 1700 & 0.082 * & 0 & 139 & 1700 & 0.082 * & 0 & 139 & 1700 & 0.082 * \\
\hline Eb Left & 104 & 1700 & 0.061 * & 8 & 111 & 0.065 * & 0 & 111 & 1700 & 0.065 * & 4 & 115 & 1700 & 0.068 * & 0 & 115 & 1700 & 0.068 * \\
\hline Eb Thru & 62 & 1700 & 0.036 & 5 & 67 & 0.039 & 0 & 67 & 1700 & 0.039 & 0 & 67 & 1700 & 0.039 & 0 & 67 & 1700 & 0.039 \\
\hline Eb Right & 0 & 0 & - & 0 & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 & - \\
\hline Wb Left & 0 & 0 & 0.000 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 \\
\hline Wb Thru & 46 & 3400 & 0.046 * & 3 & 49 & 0.049 * & 0 & 49 & 3400 & 0.050 * & 0 & 49 & 3400 & 0.051 * & 0 & 49 & 3400 & 0.051 * \\
\hline Wb Right & 111 & 0 & - & 8 & 119 & - & 1 & 120 & 0 & - & 4 & 124 & 0 & - & 0 & 124 & 0 & - \\
\hline Yellow Allow & ance: & & 0.100 * & \multicolumn{3}{|r|}{0.100 *} & \multicolumn{4}{|r|}{0.100 *} & \multicolumn{4}{|r|}{0.100 *} & & & & 0.100 * \\
\hline ICU & & & \multirow[t]{2}{*}{A 0.283} & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{A 0.296}} & \multicolumn{4}{|r|}{\multirow[t]{2}{*}{A 0.297}} & \multicolumn{4}{|r|}{\multirow[t]{2}{*}{A 0.300}} & & & & 0.300 \\
\hline LOS & & A & & & & & & & & & & & & & \multicolumn{4}{|r|}{A} \\
\hline
\end{tabular}
*Key conflicting movement as a part of ICU
1 Counts conducted by: The Traffic Solution
Capacity expressed in veh/hour of green
Note: Year 2008 manual traffic counts were adjusted by a 1.5 percent ( \(1.5 \%\) ) ambient growth factor to reflect year 2009 existing conditions.

LINSCOTT, LAW \& GREENSPAN, ENGINEERS
236 N. Chester Avenue, Suite 200, Pasadena CA 91106
(626) 796.2322 Fax (626) 792.0941

\section*{INTERSECTION CAPACITY UTILIZATION}

Highland Drive-Linda Vista Avenue @ Woodbury Road
Peak hr: PM Date:
Date:
03/11/2009
2009
2014
\begin{tabular}{ll} 
N-S St: & Highland Drive-Linda Vista Avenue \\
E-W St: & Woodbury Road \\
Project: & HWP Annex Project/1-083745-1 \\
File: & ICU8
\end{tabular}

Project: icus
\(\begin{array}{ll}\text { Peak hr: } & \text { PM } \\ \text { Annual Growth: } & 1.50 \%\end{array}\)

Date of Count:
Projection Year:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{2009 EXIST. TRAFFIC} & \multicolumn{3}{|l|}{2014 W/AMBIENT GROWTH} & \multicolumn{4}{|l|}{2014 W/RELATED PROJECTS} & \multicolumn{4}{|l|}{2014 W/PROJECT SITE TRAFFIC} & \multicolumn{5}{|l|}{2014 W/PROJECT MITIGATION} \\
\hline Movement & Volume & Capacity \({ }^{2}\) & \begin{tabular}{l}
VIC \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \begin{tabular}{l}
VIC \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \[
\begin{array}{r}
2 \\
\text { Capacity }
\end{array}
\] & \begin{tabular}{l}
V/C \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \[
\begin{array}{r}
2 \\
\text { Capacity } \\
\hline
\end{array}
\] & \begin{tabular}{l}
V/C \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \begin{tabular}{l}
\[
2
\] \\
Capacity
\end{tabular} & \begin{tabular}{l}
VIC \\
Ratio
\end{tabular} & \\
\hline Nb Left & 0 & 0 & 0.000 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & & 0.000 \\
\hline Nb Thru & 0 & 0 & 0.000 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & & 0.000 \\
\hline Nb Right & 0 & 0 & - & 0 & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 & - & \\
\hline Sb Left & 91 & 1700 & 0.054 & 7 & 98 & 0.058 & 10 & 108 & 1700 & 0.064 & 4 & 112 & 1700 & 0.066 & 0 & 112 & 1700 & & 0.066 \\
\hline Sb Thru & 0 & 0 & 0.000 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & & 0.000 \\
\hline Sb Right & 44 & 1700 & 0.026 & 3 & 47 & 0.028 & 6 & 53 & 1700 & 0.031 & 4 & 57 & 1700 & 0.033 & 0 & 57 & 1700 & & 0.033 \\
\hline Eb Left & 48 & 1700 & 0.028 * & 4 & 51 & 0.030 * & 5 & 56 & 1700 & 0.033 * & 0 & 56 & 1700 & 0.033 * & 0 & 56 & 1700 & & 0.033 * \\
\hline Eb Thru & 50 & 1700 & 0.029 & 4 & 53 & 0.031 & 0 & 53 & 1700 & 0.031 & 0 & 53 & 1700 & 0.031 & 0 & 53 & 1700 & & 0.031 \\
\hline Eb Right & 0 & 0 & - & 0 & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 & - & \\
\hline Wb Left & 0 & 0 & 0.000 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & 0.000 & 0 & 0 & 0 & & 0.000 \\
\hline Wb Thru & 54 & 3400 & 0.044 * & 4 & 58 & 0.047 * & 0 & 58 & 3400 & 0.050 * & 0 & 58 & 3400 & 0.050 * & 0 & 58 & 3400 & & 0.050 * \\
\hline Wb Right & 95 & 0 & - & 7 & 103 & - & 8 & 111 & 0 & - & 0 & 111 & 0 & - & 0 & 111 & 0 & - & \\
\hline Yellow Allow & ance: & & 0.100 * & \multicolumn{3}{|r|}{0.100 *} & \multicolumn{4}{|r|}{0.100 *} & \multicolumn{4}{|r|}{0.100 *} & & & & & 0.100 * \\
\hline ICU & & & \multirow[t]{2}{*}{A 0.226} & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{A 0.235}} & \multicolumn{2}{|c|}{A 0.246} & & & \multicolumn{4}{|r|}{A 0.249} & \multicolumn{5}{|r|}{\multirow[t]{2}{*}{\(A^{0.249}\)}} \\
\hline LOS & & A 0.226 & & & & & & & & & \multicolumn{4}{|r|}{A} & & & & & \\
\hline
\end{tabular}

Counts conducted by: The Traffic Solution
Capacity expressed in veh/hour of green
Note: Year 2008 manual traffic counts were adjusted by a 1.5 percent ( \(1.5 \%\) ) ambient growth factor to reflect year 2009 existing conditions.

LINSCOTT, LAW \& GREENSPAN, ENGINEERS
236 N. Chester Avenue, Suite 200, Pasadena CA 91106
(626) 796.2322 Fax (626) 792.0941
\begin{tabular}{ll} 
N-S St: & Highland Drive-Linda Vista Avenue \\
E-W St: & Woodbury Road \\
Project: & HWP Annex Project/1-083745-1 \\
File: & ICUB
\end{tabular}

INTERSECTION CAPACITY UTILIZATION
Highland Drive-Linda Vista Avenue @ Woodbury Road Peak hr: Weekend Mid-day
Annual Growth: 1.50\%

Date:
Date of Count:
Projection Year:

03/11/2009
2009


Capacity expressed in veh/hour of green
Note: Year 2008 manual traffic counts were adjusted by a 1.5 percent ( \(1.5 \%\) ) ambient growth factor to reflect year 2009 existing conditions.

INSCOTT, LAW \& GREENSPAN, ENGINEERS
236 N. Chester Avenue, Suite 200, Pasadena CA 91106
(626) 796.2322 Fax (626) 792.0941

\section*{NTERSECTION CAPACITY UTILIZATION}

Windsor Avenue @ Oak Grove Drive-Woodbury Road
AM
Annual Growth: \(\quad 1.50 \%\)

\section*{Date \\ Date of Count:}

Projection Year:

03/11/2009
2009

Oak Grove Drive-Woodbury Road
Project: HWP Annex Project/1-083745-1
File: ICU9
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 2009 & XIST. TRAFF & & 2014 & W/AMBIEN & GROWTH & 2014 & W/RELATE & ED PROJEC & & & W/PROJE & CT SITE TR & AFFIC & & W/PROJE & CT MITIGAT & \\
\hline Movement & Volume & \[
\text { Capacity }{ }^{2}
\] & \begin{tabular}{l}
V/C \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \begin{tabular}{l}
V/C \\
Ratio
\end{tabular} & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \[
\begin{array}{r}
2 \\
\text { Capacity }
\end{array}
\] & \[
\begin{gathered}
\text { VIC } \\
\text { Ratio }
\end{gathered}
\] & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & Total Volume & \[
\begin{array}{r}
2 \\
\text { Capacity }
\end{array}
\] & \[
\begin{gathered}
\text { V/C } \\
\text { Ratio }
\end{gathered}
\] & \begin{tabular}{l}
Added \\
Volume
\end{tabular} & \begin{tabular}{l}
Total \\
Volume
\end{tabular} & \begin{tabular}{l}
2 \\
Capacity
\end{tabular} & \begin{tabular}{l}
V/C \\
Ratio
\end{tabular} \\
\hline Nb Left & 124 & 1700 & 0.073 * & 9 & 133 & 0.078 * & 0 & 133 & 1700 & 0.078 * & 4 & 137 & 1700 & 0.081 * & 0 & 137 & 1700 & 0.081 * \\
\hline Nb Thru & 675 & 3400 & 0.199 & 51 & 726 & 0.213 & 3 & 729 & 3400 & 0.214 & 0 & 729 & 3400 & 0.214 & 0 & 729 & 3400 & 0.214 \\
\hline Nb Right [3] & 560 & 1700 & 0.000 & 42 & 602 & 0.000 & 0 & 602 & 1700 & 0.000 & 0 & 602 & 1700 & 0.000 & 0 & 602 & 1700 & 0.000 \\
\hline Sb Left & 38 & 1700 & 0.022 & 3 & 40 & 0.024 & 0 & 40 & 1700 & 0.024 & 0 & 40 & 1700 & 0.024 & 0 & 40 & 1700 & 0.024 \\
\hline Sb Thru & 707 & 3400 & 0.214 * & 53 & 760 & 0.230 * & 1 & 761 & 3400 & 0.231 * & 0 & 761 & 3400 & 0.232 * & 0 & 761 & 3400 & 0.232 * \\
\hline Sb Right & 22 & 0 & - & 2 & 23 & - & 0 & 23 & 0 & - & 4 & 27 & 0 & - & 0 & 27 & 0 & - \\
\hline Eb Left & 32 & 1700 & 0.019 & 2 & 35 & 0.020 & 1 & 36 & 1700 & 0.021 & 0 & 36 & 1700 & 0.021 & 0 & 36 & 1700 & 0.021 \\
\hline Eb Thru & 116 & 3400 & 0.034 & 9 & 125 & 0.037 & 1 & 126 & 3400 & 0.037 & 0 & 126 & 3400 & 0.037 & 0 & 126 & 3400 & 0.037 \\
\hline Eb Right & 59 & 1700 & 0.035 * & 4 & 64 & 0.037 * & 0 & 64 & 1700 & 0.037 * & 0 & 64 & 1700 & 0.037 * & 0 & 64 & 1700 & 0.037 * \\
\hline Wb Left & 563 & 1700 & 0.331 * & 42 & 606 & 0.356 * & 0 & 606 & 1700 & 0.356 * & 0 & 606 & 1700 & 0.356 * & 0 & 606 & 1700 & 0.356 * \\
\hline Wb Thru & 342 & 3400 & 0.116 & 26 & 367 & 0.124 & 2 & 369 & 3400 & 0.125 & 8 & 377 & 3400 & 0.127 & 0 & 377 & 3400 & 0.127 \\
\hline Wb Right & 52 & 0 & - & 4 & 55 & - & 0 & 55 & 0 & - & 0 & 55 & 0 & - & 0 & 55 & 0 & - \\
\hline \multicolumn{2}{|l|}{Yellow Allowance:} & \multicolumn{2}{|r|}{0.100 *} & \multicolumn{3}{|r|}{0.100 *} & \multicolumn{4}{|r|}{0.100 *} & \multicolumn{4}{|r|}{0.100 *} & \multicolumn{4}{|r|}{0.100 *} \\
\hline ICU & & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{C \({ }^{0.753}\)}} & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{D 0.802}} & \multicolumn{4}{|r|}{\multirow[t]{2}{*}{D 0.803}} & \multicolumn{4}{|r|}{\multirow[t]{2}{*}{D 0.806}} & \multicolumn{4}{|r|}{0.806} \\
\hline LOS & & & & & & & & & & & & & & & \multicolumn{4}{|r|}{D} \\
\hline
\end{tabular}
* Key conflicting movement as a part of \(/ C U\)

Counts conducted by: Accutek
2 Capacity expressed in veh/hour of green
3 Northbound right-turn overlap with westbound left-turn phase.
Note: Year 2004 manual traffic counts were adjusted by a 1.5 percent (1.5\%) ambient growth factor to reflect year 2009 existing conditions.

LINSCOTT, LAW \& GREENSPAN, ENGINEERS
236 N. Chester Avenue, Suite 200, Pasadena CA 91106
(626) 796.2322 Fax (626) 792.0941
\begin{tabular}{ll} 
N-S St: & Windsor Avenue \\
E-W St: & Oak Grove Drive-Woodbury Road \\
Project: & HWP Annex Project/1-083745-1 \\
File: & ICU9
\end{tabular}
\(\begin{array}{ll}\text { E-W St: } & \text { Oak Grove Drive-Woodbury Road } \\ \text { Project: } & \text { HWP Annex Project/1-083745-1 }\end{array}\)
File: ICU9

*Key conflicting movement as a part of ICU
Counts conducted by: Accutek
Capacity expressed in veh/hour of green
Northbound right-turn overlap with westbound left-turn phase
Note: Year 2004 manual traffic counts were adjusted by a 1.5 percent (1.5\%) ambient growth factor to reflect year 2009 existing conditions.

LINSCOTT, LAW \& GREENSPAN, ENGINEERS
236 N. Chester Avenue, Suite 200, Pasadena CA 91106
626) 796.2322 Fax (626) 792.0941
```

N-S St: Windsor Avenue
E-W St: Oak Grove Drive-Woodbury Road
Project: HWP Annex Project/1-083745-1
File: ICU9

```

INTERSECTION CAPACITY UTILIZATION
Windsor Avenue @ Oak Grove Drive-Woodbury Road
Peak hr: Weekend Mid-day
Annual Growth: \(1.50 \%\)

Date:
Date of Count:
Projection Year:
03/11/2009 2009

*Key conflicting movement as a part of ICU
Counts conducted by: Accutek
2 Capacity expressed in veh/hour of green
3 Northbound right-turn overlap with westbound left-furn phase.
Note: Year 2004 manual traffic counts were adjusted by a 1.5 percent (1.5\%) ambient growih factor to reflect year 2009 existing conditions.

\section*{Appendix D}

\section*{Automatic 24-Hour Machine Traffic Counts}

\section*{ADT SURVEY SUMMARY}

PROJECT: HAHAMONGNA ANNEX - CITY OF LOS ANGELES LOCATION: HIGHLAND DRIVE N/O LINDA VISTA AVENUE

DATE:
TUESDAY 06/03/08
SITE CODE: 3-ADT
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{NORTHBOUND} \\
\hline TIME & 00-15 & 15-30 & 30-45 & 45-60 & HOURLY TOTAL \\
\hline 00:00 & 1 & 3 & 6 & 1 & 11 \\
\hline 01:00 & 0 & 0 & 0 & 1 & 1 \\
\hline 02:00 & 0 & 0 & 0 & 1 & 1 \\
\hline 03:00 & 0 & 0 & 0 & 0 & 0 \\
\hline 04:00 & 1 & 0 & 0 & 0 & 1 \\
\hline 05:00 & 0 & 1 & 2 & 6 & 9 \\
\hline 06:00 & 1 & 12 & 10 & 14 & 37 \\
\hline 07:00 & 10 & 19 & 23 & 56 & 108 \\
\hline 08:00 & 64 & 38 & 24 & 28 & 154 \\
\hline 09:00 & 21 & 13 & 14 & 18 & 66 \\
\hline 10:00 & 19 & 33 & 16 & 19 & 87 \\
\hline 11:00 & 15 & 14 & 15 & 20 & 64 \\
\hline 12:00 & 29 & 24 & 23 & 12 & 88 \\
\hline 13:00 & 19 & 22 & 26 & 17 & 84 \\
\hline 14:00 & 13 & 14 & 18 & 27 & 72 \\
\hline 15:00 & 29 & 22 & 20 & 24 & 95 \\
\hline 16:00 & 19 & 12 & 21 & 13 & 65 \\
\hline 17:00 & 21 & 22 & 30 & 17 & 90 \\
\hline 18:00 & 17 & 18 & 18 & 16 & 69 \\
\hline 19:00 & 18 & 14 & 16 & 10 & 58 \\
\hline 20:00 & 15 & 8 & 9 & 6 & 38 \\
\hline 21:00 & 8 & 9 & 6 & 4 & 27 \\
\hline 22:00 & 0 & 3 & 3 & 4 & 10 \\
\hline 23:00 & 4 & 0 & 1 & 1 & 6 \\
\hline & & & & OTAL & 1241 \\
\hline \multicolumn{3}{|l|}{AM PEAK HOUR} & & 7:45 & to 8:45 \\
\hline \multicolumn{3}{|c|}{VOLUME} & & & 182 \\
\hline \multicolumn{3}{|l|}{PM PEAK HOUR} & & 14:45 & to 15:45 \\
\hline \multicolumn{3}{|c|}{VOLUME} & \multicolumn{3}{|r|}{98} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{SOUTHBOUND} \\
\hline TIME & 00-15 & 15-30 & 30-45 & 45-60 & HOURLY
TOTAL \\
\hline 00:00 & 5 & 2 & 1 & 1 & 9 \\
\hline 01:00 & 0 & 0 & 0 & 0 & 0 \\
\hline 02:00 & 0 & 1 & 0 & 1 & 2 \\
\hline 03:00 & 0 & 0 & 0 & 0 & 0 \\
\hline 04:00 & 0 & 0 & 0 & 1 & 1 \\
\hline 05:00 & 2 & 3 & 7 & 3 & 15 \\
\hline 06:00 & 6 & 0 & 6 & 10 & 22 \\
\hline 07:00 & 17 & 20 & 32 & 51 & 120 \\
\hline 08:00 & 30 & 34 & 26 & 15 & 105 \\
\hline 09:00 & 16 & 11 & 15 & 17 & 59 \\
\hline 10:00 & 20 & 31 & 23 & 19 & 93 \\
\hline 11:00 & 17 & 12 & 17 & 11 & 57 \\
\hline 12:00 & 18 & 19 & 22 & 13 & 72 \\
\hline 13:00 & 17 & 19 & 27 & 22 & 85 \\
\hline 14:00 & 16 & 26 & 14 & 20 & 76 \\
\hline 15:00 & 22 & 17 & 28 & 34 & 101 \\
\hline 16:00 & 24 & 23 & 13 & 24 & 84 \\
\hline 17:00 & 21 & 25 & 27 & 26 & 99 \\
\hline 18:00 & 21 & 12 & 16 & 16 & 65 \\
\hline 19:00 & 18 & 14 & 15 & 14 & 61 \\
\hline 20:00 & 4 & 12 & 6 & 5 & 27 \\
\hline 21:00 & 3 & 6 & 2 & 3 & 14 \\
\hline 22:00 & 6 & 6 & 2 & 2 & 16 \\
\hline 23:00 & 0 & 2 & 2 & 1 & 5 \\
\hline & & & & TOTAL & 1188 \\
\hline \multicolumn{3}{|l|}{AM PEAK HOUR} & \multicolumn{3}{|r|}{7:30 to 8:30} \\
\hline \multicolumn{3}{|c|}{VOLUME} & \multicolumn{3}{|r|}{147} \\
\hline \multicolumn{3}{|l|}{PM PEAK HOUR} & \multicolumn{3}{|r|}{15:30 to 16:30} \\
\hline \multicolumn{3}{|c|}{VOLUME} & \multicolumn{3}{|r|}{109} \\
\hline
\end{tabular}
\begin{tabular}{|l|r|}
\hline TOTAL BI-DIRECTIONAL VOLUME & 2429 \\
\hline NORTHBOUND & \(51 \%\) \\
\hline SOUTHBOUND & \(49 \%\) \\
\hline
\end{tabular}

\title{
THE TRAFFIC SOLUTION
}

Tel (626) 446.7978 Fax (626) 446.2877

\section*{ADT SURVEY SUMMARY}

\section*{PROJECT: HAHAMONGNA ANNEX - PASADENA}

LOCATION: HIGHLAND DRIVE N/O LINDA VISTA AVENUE
DATE: SATURDAY 10/11/08
SITE CODE: 3-ADT
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{NORTHBOUND} \\
\hline TIME & 00-15 & 15-30 & 30-45 & 45-60 & HOURLY TOTAL \\
\hline 00:00 & 3 & 3 & 0 & 1 & 7 \\
\hline 01:00 & 0 & 1 & 0 & 0 & 1 \\
\hline 02:00 & 0 & 0 & 0 & 0 & 0 \\
\hline 03:00 & 1 & 0 & 1 & 1 & 3 \\
\hline 04:00 & 0 & 0 & 0 & 0 & 0 \\
\hline 05:00 & 0 & 0 & 3 & 2 & 5 \\
\hline 06:00 & 1 & 1 & 2 & 2 & 6 \\
\hline 07:00 & 7 & 5 & 4 & 9 & 25 \\
\hline 08:00 & 8 & 11 & 16 & 14 & 49 \\
\hline 09:00 & 11 & 15 & 16 & 20 & 62 \\
\hline 10:00 & 11 & 16 & 18 & 22 & 67 \\
\hline 11:00 & 18 & 17 & 17 & 24 & 76 \\
\hline 12:00 & 9 & 8 & 16 & 17 & 50 \\
\hline 13:00 & 21 & 12 & 22 & 21 & 76 \\
\hline 14:00 & 22 & 12 & 15 & 10 & 59 \\
\hline 15:00 & 11 & 18 & 11 & 15 & 55 \\
\hline 16:00 & 15 & 20 & 19 & 14 & 68 \\
\hline 17:00 & 20 & 11 & 18 & 15 & 64 \\
\hline 18:00 & 10 & 14 & 7 & 6 & 37 \\
\hline 19:00 & 11 & 3 & 4 & 5 & 23 \\
\hline 20:00 & 6 & 3 & 1 & 8 & 18 \\
\hline 21:00 & 4 & 8 & 7 & 5 & 24 \\
\hline 22:00 & 3 & 3 & 3 & 2 & 11 \\
\hline 23:00 & 1 & 3 & 2 & 3 & 9 \\
\hline & & & & TOTAL & 795 \\
\hline \multicolumn{3}{|l|}{AM PEAK HOUR} & & 11:00 & to 12:00 \\
\hline \multicolumn{3}{|c|}{VOLUME} & & & 76 \\
\hline \multicolumn{3}{|l|}{PM PEAK HOUR} & & 13:15 & to 14:15 \\
\hline \multicolumn{3}{|c|}{VOLUME} & & & 77 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{SOUTHBOUND} \\
\hline TIME & 00-15 & 15-30 & 30-45 & 45-60 & \[
\begin{gathered}
\text { HOURLY } \\
\text { TOTAL } \\
\hline
\end{gathered}
\] \\
\hline 00:00 & 5 & 2 & 2 & 1 & 10 \\
\hline 01:00 & 2 & 0 & 0 & 0 & 2 \\
\hline 02:00 & 0 & 0 & 0 & 0 & 0 \\
\hline 03:00 & 0 & 0 & 1 & 0 & 1 \\
\hline 04:00 & 2 & 0 & 0 & 0 & 2 \\
\hline 05:00 & 0 & 0 & 1 & 0 & 1 \\
\hline 06:00 & 2 & 2 & 3 & 6 & 13 \\
\hline 07:00 & 1 & 5 & 4 & 9 & 19 \\
\hline 08:00 & 12 & 24 & 11 & 7 & 54 \\
\hline 09:00 & 10 & 7 & 15 & 16 & 48 \\
\hline 10:00 & 20 & 24 & 17 & 18 & 79 \\
\hline 11:00 & 23 & 17 & 12 & 13 & 65 \\
\hline 12:00 & 24 & 13 & 10 & 11 & 58 \\
\hline 13:00 & 21 & 16 & 10 & 14 & 61 \\
\hline 14:00 & 12 & 21 & 12 & 10 & 55 \\
\hline 15:00 & 19 & 15 & 16 & 19 & 69 \\
\hline 16:00 & 18 & 9 & 16 & 18 & 61 \\
\hline 17:00 & 18 & 10 & 5 & 16 & 49 \\
\hline 18:00 & 10 & 12 & 15 & 4 & 41 \\
\hline 19:00 & 7 & 6 & 6 & 8 & 27 \\
\hline 20:00 & 4 & 6 & 6 & 3 & 19 \\
\hline 21:00 & 5 & 3 & 5 & 6 & 19 \\
\hline 22:00 & 8 & 2 & 2 & 2 & 14 \\
\hline 23:00 & 5 & 1 & 2 & 3 & 11 \\
\hline & & & & TOTAL & 778 \\
\hline \multicolumn{3}{|l|}{AM PEAK HOUR} & & 10:15 & to 11:15 \\
\hline \multicolumn{3}{|c|}{VOLUME} & & & 82 \\
\hline \multicolumn{3}{|l|}{PM PEAK HOUR} & & 15:00 & to 16:00 \\
\hline \multicolumn{3}{|c|}{VOLUME} & \multicolumn{3}{|r|}{69} \\
\hline
\end{tabular}
\begin{tabular}{|l|r|}
\hline TOTAL BI-DIRECTIONAL VOLUME & 1573 \\
\hline NORTHBOUND & \(51 \%\) \\
\hline SOUTHBOUND & \(49 \%\) \\
\hline
\end{tabular}

\section*{THE TRAFFIC SOLUTION}
\(\mathrm{Tel}(626) 446.7978 \mathrm{Fax}(626) 446.2877\)

\section*{ADT SURVEY SUMMARY}

PROJECT: HAHAMONGNA ANNEX - PASADENA
LOCATION: LINDA VISTA AVENUE SIO HIGHLAND DRIVE
DATE: SATURDAY 10/11/08
SITE CODE: 4-ADT
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{NORTHBOUND} \\
\hline TIME & 00-15 & 15-30 & 30-45 & 45-60 & HOURLY TOTAL \\
\hline 00:00 & 4 & 6 & 6 & 0 & 16 \\
\hline 01:00 & 5 & 4 & 0 & 0 & 9 \\
\hline 02:00 & 2 & 1 & 0 & 0 & 3 \\
\hline 03:00 & 0 & 0 & 0 & 0 & 0 \\
\hline 04:00 & 0 & 0 & 0 & 0 & 0 \\
\hline 05:00 & 2 & 1 & 3 & 3 & 9 \\
\hline 06:00 & 4 & 3 & 5 & 7 & 19 \\
\hline 07:00 & 3 & 7 & 13 & 18 & 41 \\
\hline 08:00 & 16 & 15 & 19 & 20 & 70 \\
\hline 09:00 & 29 & 35 & 25 & 30 & 119 \\
\hline 10:00 & 24 & 23 & 37 & 27 & 111 \\
\hline 11:00 & 25 & 27 & 44 & 34 & 130 \\
\hline 12:00 & 27 & 25 & 31 & 36 & 119 \\
\hline 13:00 & 28 & 30 & 23 & 30 & 111 \\
\hline 14:00 & 28 & 25 & 26 & 20 & 99 \\
\hline 15:00 & 15 & 25 & 27 & 26 & 93 \\
\hline 16:00 & 56 & 31 & 30 & 24 & 141 \\
\hline 17:00 & 24 & 20 & 25 & 18 & 87 \\
\hline 18:00 & 20 & 31 & 21 & 25 & 97 \\
\hline 19:00 & 11 & 11 & 8 & 5 & 35 \\
\hline 20:00 & 11 & 5 & 6 & 10 & 32 \\
\hline 21:00 & 9 & 6 & 4 & 2 & 21 \\
\hline 22:00 & 6 & 3 & 6 & 4 & 19 \\
\hline 23:00 & 2 & 5 & 2 & 4 & 13 \\
\hline & & & & TOTAL & 1394 \\
\hline \multicolumn{3}{|l|}{AM PEAK HOUR} & & \multicolumn{2}{|l|}{11:15 to 12:15} \\
\hline \multicolumn{3}{|c|}{VOLUME} & \multicolumn{3}{|r|}{132} \\
\hline \multicolumn{3}{|l|}{PM PEAK HOUR} & \multicolumn{3}{|r|}{15:45 to 16:45} \\
\hline \multicolumn{3}{|c|}{VOLUME} & \multicolumn{3}{|r|}{143} \\
\hline
\end{tabular}

\begin{tabular}{|l|r|}
\hline TOTAL BI-DIRECTIONAL VOLUME & 2738 \\
\hline NORTHBOUND & \(51 \%\) \\
\hline SOUTHBOUND & \(49 \%\) \\
\hline
\end{tabular}

THE TRAFFIC SOLUTION
329 Diamond Street, Arcadia, CA 91006
Tel (626) 446.7978 Fax (626) 446.2877

ADT SURVEY SUMMARY
PROJECT: HAHAMONGNA ANNEX - CITY OF LOS ANGELES
LOCATION: LINDA VISTA AVENUE S/O HIGHLAND DRIVE
DATE:
TUESDAY 06/03/08
SITE CODE: 4-ADT
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{NORTHBOUND} \\
\hline TIME & 00-15 & 15-30 & 30-45 & 45-60 & HOURLY TOTAL \\
\hline 00:00 & 1 & 5 & 2 & 4 & 12 \\
\hline 01:00 & 0 & 0 & 0 & 0 & 0 \\
\hline 02:00 & 0 & 0 & 1 & 0 & 1 \\
\hline 03:00 & 0 & 1 & 0 & 0 & 1 \\
\hline 04:00 & 0 & 1 & 0 & 1 & 2 \\
\hline 05:00 & 0 & 0 & 1 & 8 & 9 \\
\hline 06:00 & 8 & 9 & 10 & 14 & 41 \\
\hline 07:00 & 12 & 21 & 39 & 42 & 114 \\
\hline 08:00 & 35 & 35 & 24 & 31 & 125 \\
\hline 09:00 & 24 & 29 & 28 & 16 & 97 \\
\hline 10:00 & 24 & 26 & 17 & 28 & 95 \\
\hline 11:00 & 22 & 27 & 26 & 28 & 103 \\
\hline 12:00 & 28 & 35 & 21 & 18 & 102 \\
\hline 13:00 & 17 & 31 & 35 & 30 & 113 \\
\hline 14:00 & 20 & 27 & 30 & 34 & 111 \\
\hline 15:00 & 34 & 35 & 34 & 27 & 130 \\
\hline 16:00 & 25 & 28 & 28 & 37 & 118 \\
\hline 17:00 & 34 & 34 & 33 & 26 & 127 \\
\hline 18:00 & 26 & 20 & 31 & 39 & 116 \\
\hline 19:00 & 21 & 26 & 28 & 21 & 96 \\
\hline 20:00 & 19 & 12 & 13 & 7 & 51 \\
\hline 21:00 & 18 & 15 & 12 & 11 & 56 \\
\hline 22:00 & 14 & 14 & 5 & 4 & 37 \\
\hline 23:00 & 5 & 3 & 5 & 6 & 19 \\
\hline & & & & OTAL & 1676 \\
\hline \multicolumn{3}{|l|}{AM PEAK HOUR} & \multicolumn{3}{|r|}{7:30 to 8:30} \\
\hline \multicolumn{3}{|c|}{VOLUME} & \multicolumn{3}{|r|}{151} \\
\hline \multicolumn{3}{|l|}{PM PEAK HOUR} & \multicolumn{3}{|r|}{16:45 to 17:45} \\
\hline \multicolumn{3}{|c|}{VOLUME} & \multicolumn{3}{|r|}{138} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{SOUTHBOUND} \\
\hline TIME & 00-15 & 15-30 & 30-45 & 45-60 & HOURLY TOTAL \\
\hline 00:00 & 0 & 2 & 2 & 1 & 5 \\
\hline 01:00 & 1 & 0 & 0 & 0 & 1 \\
\hline 02:00 & 2 & 0 & 2 & 1 & 5 \\
\hline 03:00 & 1 & 0 & 1 & 0 & 2 \\
\hline 04:00 & 0 & 1 & 2 & 0 & 3 \\
\hline 05:00 & 0 & 6 & 2 & 6 & 14 \\
\hline 06:00 & 6 & 8 & 6 & 11 & 31 \\
\hline 07:00 & 16 & 22 & 31 & 58 & 127 \\
\hline 08:00 & 42 & 34 & 38 & 25 & 139 \\
\hline 09:00 & 20 & 24 & 23 & 17 & 84 \\
\hline 10:00 & 25 & 23 & 22 & 22 & 92 \\
\hline 11:00 & 17 & 24 & 32 & 18 & 91 \\
\hline 12:00 & 16 & 20 & 27 & 20 & 83 \\
\hline 13:00 & 29 & 29 & 27 & 27 & 112 \\
\hline 14:00 & 23 & 31 & 33 & 29 & 116 \\
\hline 15:00 & 32 & 39 & 41 & 39 & 151 \\
\hline 16:00 & 30 & 30 & 33 & 44 & 137 \\
\hline 17:00 & 36 & 27 & 41 & 42 & 146 \\
\hline 18:00 & 38 & 26 & 29 & 25 & 118 \\
\hline 19:00 & 30 & 23 & 26 & 19 & 98 \\
\hline 20:00 & 13 & 16 & 9 & 10 & 48 \\
\hline 21:00 & 11 & 10 & 12 & 8 & 41 \\
\hline 22:00 & 8 & 8 & 4 & 5 & 25 \\
\hline 23:00 & 2 & 2 & 3 & 2 & 9 \\
\hline & & & & TOTAL & 1678 \\
\hline \multicolumn{3}{|l|}{AM PEAK HOUR} & \multicolumn{3}{|r|}{7:45 to 8:45} \\
\hline \multicolumn{3}{|c|}{VOLUME} & \multicolumn{3}{|r|}{172} \\
\hline \multicolumn{3}{|l|}{PM PEAK HOUR} & \multicolumn{3}{|r|}{15:00 to 16:00} \\
\hline \multicolumn{3}{|c|}{VOLUME} & \multicolumn{3}{|r|}{151} \\
\hline
\end{tabular}
\begin{tabular}{|l|r|}
\hline TOTAL BI-DIRECTIONAL VOLUME & 3354 \\
\hline NORTHBOUND & \(50 \%\) \\
\hline SOUTHBOUND & \(50 \%\) \\
\hline
\end{tabular}```


[^0]:    ${ }^{1}$ Guidelines for Transportation Review of Projects, City of Pasadena Department of Transportation, February 2004.
    ${ }^{2} 2004$ Congestion Management Program for Los Angeles County, Los Angeles County Metropolitan Transportation Authority, July 2004.

[^1]:    ${ }^{3}$ Source for weekday traffic counts: Final Traffic Impact Study, PWP Temporary Relocation Project, City of Pasadena, California, dated October 15, 2008, prepared by LLG Engineers.

[^2]:    1-210 SB ON-OFF RAMP

